ECTS - Theory of Ordinary Differential Equations

Theory of Ordinary Differential Equations (MATH360) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Ordinary Differential Equations MATH360 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
(MATH262 veya MATH231)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course is designed to present other aspects of ordinary differential equations to the student who has so far seen the basic solution techniques. The emphasis is on existence-uniqueness and related questions; initial value, boundary value and eigenvalue problems are introduced within that concept. Examples and problems aim to clarify the theory.
Course Learning Outcomes The students who succeeded in this course;
  • know other aspects of ordinary differential equations such as existence-uniqueness theorems, initial and boundary value problems, eigenvalue problems.
  • prove the existence theorem and to learn continuation of solution and dependence on initial value.
  • transform differential equations to systems of higher order ODE and to use the vector notation, Wronskian identity.
  • learn oscillation and comparison theorems.
Course Content First-order ordinary differential equations, the Existence and Uniqueness Theorem, systems and higher-order ordinary differential equations, linear differential equations, boundary value problems and eigenvalue problems, oscillation and comparison theorems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 I. First Order Ordinary Differential Equations: Introduction pp. 1-3
2 Tangent Line Approximation, Cauchy-Euler Method pp. 4-7
3 The Graph Method, Direction Fields, E-U of Solutions of IVP’s pp. 8-21
4 II. Proof of Existence and Uniqueness (E-U) Theorem: Differential Inequalities, Integral Inequalities and Gronwall’s Lemma pp. 22-28
5 Integral Equations,The Uniquenness Theorem, Picard’s Method. Preparation of Existence Theorem pp. 29-42
6 Proof of Existence Theorem, Continuation of Solution, Dependence on Initial Value pp. 43-61
7 Midterm
8 III. Systems and Higher order Ordinary Differential Equations:Introduction. The Vector Notation, Initial Value Problems pp. 62-72
9 The Uniqueness Theorem, Picard’s Method, The Existence Theorem pp. 73-86
10 Continuation of Solution, Dependence on Parameter, Complex Valued Equations pp. 87-104
11 IV. Linear Differential Equations: General Theory, Second Order Linear Equations and the Wronskian Identity pp. 105-116
12 V. Boundary Value Problems and Eigenvalue Problems:Boundary Value Problems (BVP), Examples pp. 117-125
13 The number of Solutions of BVP, Eigenvalue Problems pp. 126-142
14 VI. Oscillation and Comparison Theorems: Zeros of Solutions pp. 143-150
15 An Eigenvalue Problem pp. 151-154
16 Final Exam

Sources

Course Book 1. Introduction to Theoretical Aspects of Ordinary Differential Equations, A. K. Erkip
Other Sources 2. Differential Equations, Second Edition, by Shepley L. Ross, John
3. Lectures on Differential Equations, Yılmaz Akyıldız and Ali Yazıcı.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires skills to use the advanced theoretical and applied knowledge obtained at the mathematics bachelors program to do further academic and scientific research in both mathematics-based graduate programs and public or private sectors. X
2 Transplants and applies the theoretical and applicable knowledge gained in their field to the secondary education by using suitable tools and devices. X
3 Acquires the skill of choosing, using and improving problem solving techniques which are needed for modeling and solving current problems in mathematics or related fields by using the obtained knowledge and skills. X
4 Acquires analytical thinking and uses time effectively in the process of deduction. X
5 Acquires basic software knowledge necessary to work in the computer science related fields and together with the skills to use information technologies effectively. X
6 Obtains the ability to collect data, to analyze, interpret and use statistical methods necessary in decision making processes. X
7 Acquires the level of knowledge to be able to work in the mathematics and related fields and keeps professional knowledge and skills up-to-date with awareness in the importance of lifelong learning. X
8 Takes responsibility in mathematics related areas and has the ability to work affectively either individually or as a member of a team. X
9 Has proficiency in English language and has the ability to communicate with colleagues and to follow the innovations in mathematics and related fields. X
10 Has the ability to communicate ideas with peers supported by qualitative and quantitative data. X
11 Has professional and ethical consciousness and responsibility which takes into account the universal and social dimensions in the process of data collection, interpretation, implementation and declaration of results in mathematics and its applications. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 16 32
Prepration of Final Exams/Final Jury
Total Workload 112