ECTS - Mathematical Analysis I
Mathematical Analysis I (MATH135) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Mathematical Analysis I | MATH135 | 1. Semester | 4 | 2 | 0 | 5 | 8.5 |
| Pre-requisite Course(s) |
|---|
| N/A |
| Course Language | English |
|---|---|
| Course Type | Compulsory Departmental Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture, Discussion, Problem Solving. |
| Course Lecturer(s) |
|
| Course Objectives | The course is designed to fill the gaps in students knowledge that they have in their pre-college education and then to provide students with a theoretical foundation and computational skills for the concepts of one-variable differential calculus and to provide the background for more advanced courses in analysis. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Preliminaries, functions and graphs, limits and continuity, derivatives, mean value theorem, applications of derivatives: monotonicity, local and absolute extrema, concavity, L?Hospital?s rule, graphs of functions. |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Sets and Numbers. Polynomials. Solving Equations and Inequalities. | pp. 3-48 |
| 2 | Functions and Graphs. Exponential Functions. Logarithmic Functions. | pp. 19-38, 172-182 |
| 3 | Trigonometric Functions. Inverse Trigonometric Functions. | pp. 41-50 |
| 4 | Limit | pp. 60-68 |
| 5 | Infinite Limits and Limits At Infinity | pp. 69-74 |
| 6 | Continuity | pp. 76-81 |
| 7 | Midterm | |
| 8 | Differentiation | pp. 95-108 |
| 9 | Definition and Properties of Derivative. | pp. 110-129 |
| 10 | Implicit Differentiation, Logarithmic Differentiation. | pp. 183-191 |
| 11 | The Mean Value Theorem and Some Applications | pp. 130-139, 273-278 |
| 12 | L’hopital’s Rule | pp. 288-294 |
| 13 | Absolute and Relative Extreme of Functions. | pp. 233-240 |
| 14 | Concavity of Functions. | pp. 241-245 |
| 15 | Sketching Graphs of Functions | pp. 246-255 |
| 16 | Final Examination |
Sources
| Course Book | 1. A complete Course, R. A. Adams, 4th Edition; Addison Wesley |
|---|---|
| Other Sources | 2. Thomas' Calculus, Early Transcendentals, 11th Edition; 2003 Revised by R. L. Finney, M. D. Weir, and F. R. Giardano; Addison Wesley |
| 3. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | - | - |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | 5 | 10 |
| Presentation | - | - |
| Project | - | - |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 2 | 50 |
| Final Exam/Final Jury | 1 | 40 |
| Toplam | 8 | 100 |
| Percentage of Semester Work | |
|---|---|
| Percentage of Final Work | 100 |
| Total | 100 |
Course Category
| Core Courses | X |
|---|---|
| Major Area Courses | |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Acquires skills to use the advanced theoretical and applied knowledge obtained at the mathematics bachelors program to do further academic and scientific research in both mathematics-based graduate programs and public or private sectors. | X | ||||
| 2 | Transplants and applies the theoretical and applicable knowledge gained in their field to the secondary education by using suitable tools and devices. | X | ||||
| 3 | Acquires the skill of choosing, using and improving problem solving techniques which are needed for modeling and solving current problems in mathematics or related fields by using the obtained knowledge and skills. | X | ||||
| 4 | Acquires analytical thinking and uses time effectively in the process of deduction. | X | ||||
| 5 | Acquires basic software knowledge necessary to work in the computer science related fields and together with the skills to use information technologies effectively. | X | ||||
| 6 | Obtains the ability to collect data, to analyze, interpret and use statistical methods necessary in decision making processes. | X | ||||
| 7 | Acquires the level of knowledge to be able to work in the mathematics and related fields and keeps professional knowledge and skills up-to-date with awareness in the importance of lifelong learning. | X | ||||
| 8 | Takes responsibility in mathematics related areas and has the ability to work affectively either individually or as a member of a team. | X | ||||
| 9 | Has proficiency in English language and has the ability to communicate with colleagues and to follow the innovations in mathematics and related fields. | X | ||||
| 10 | Has the ability to communicate ideas with peers supported by qualitative and quantitative data. | X | ||||
| 11 | Has professional and ethical consciousness and responsibility which takes into account the universal and social dimensions in the process of data collection, interpretation, implementation and declaration of results in mathematics and its applications. | X | ||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
| Laboratory | |||
| Application | 16 | 2 | 32 |
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 14 | 4 | 56 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | |||
| Homework Assignments | 5 | 5 | 25 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
| Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
| Total Workload | 212 | ||
