ECTS - Introduction to Distortion Engineering
Introduction to Distortion Engineering (MFGE434) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Distortion Engineering | MFGE434 | Area Elective | 3 | 0 | 1 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Drill and Practice, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | This course aims to acquaint the students with "Distortion Engineering" which tries to solve distortion problem by a system-oriented approach. In contrast to classical methods, which try to eliminate distortion by production step base measures, "Distortion Engineering" considers the distortion as an attribute of whole manufacturing chain and optimizes the production by intelligent use of predictive and corrective methods. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Distortion, distortion potential, distortion potential carriers, compensation potential, production step based solutions, intelligent process chain design, predictive methods, use of in-situ measurement techniques and adaptive process control. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Distortion Engineering | Chapter 1 |
2 | Material Factors Affecting Distortion | Chapter 2 |
3 | Processing Factors Affecting Distortion | Chapter 3 |
4 | Distortion and Accumulation of Distortion Potentials during Mechanical Shaping | Chapter 4 |
5 | Distortion and Accumulation of Distortion Potentials during Machining | Chapter 5 |
6 | Distortion and Release of Distortion Potentials during Heating | Chapter 6 |
7 | Distortion and Release of Distortion Potential during Quenching | Chapter 7 |
8 | Distortion during Thermochemical Surface Treatments (Carburizing, Nitriding, Carbonitriding etc.) | Chapter 8 |
9 | Distortion during Thermal Surface Treatments (Induction, Laser, Flame Hardening) | Chapter 9 |
10 | Distortion during Welding/Joining | Chapter 10 |
11 | Predictive Methods for Process Chain Design | Chapter 11 |
12 | Adaptive Methods for the Control of Distortion | Chapter 12 |
13 | Case Study (I) | Chapter 13 |
14 | Case Study (II) | Chapter 14 |
15 | Final exam period | All chapters |
16 | Final exam period | All chapters |
Sources
Course Book | 1. Ders Notları |
---|---|
Other Sources | 2. Zoch, H.W., Luebben,Th., Proceedings of 1st Conference on Distortion Engineering, Bremen, Germany, 2005 |
3. Zoch, H.W., Luebben,Th., Proceedings of 2nd Conference on Distortion Engineering, Bremen, Germany, 2008 | |
4. Zoch, H.W., Luebben,Th., Proceedings of 3rd Conference on Distortion Engineering, Bremen, Germany, 2011 | |
5. Totten, G.E., Howes. M., Inoue, T., Handbook of Residual Stress and Deformation of Steel, ASM International , ISNBN 0871707292, Ohio, 2002 | |
6. Gür, C.H., Pan , J., Handbook of Thermal Process Simulation of Steels, CRC Press, Taylor & Francis Inc., ISBN 9780849350191, 2008 | |
7. ] Liscic, B., Totten, G.E., Canale, L., Tensi, H., Quenching Theory and Technology 2nd Edition, CRC Press, Taylor & Francis Inc., ISBN 978-0-8493-9279-5, 2010 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | 1 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 2 | 10 |
Homework Assignments | 2 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 9 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. | X | ||||
2 | Analyzes and identifies problems specific to manufacturing technologies. | X | ||||
3 | Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. | X | ||||
4 | Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. | X | ||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | X | ||||
6 | Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. | X | ||||
7 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills. | X | ||||
8 | Communicates effectively in both spoken and written Turkish and English. | X | ||||
9 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | X | ||||
10 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering. | X | ||||
11 | Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | X | ||||
12 | Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 10 | 4 | 40 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
Total Workload | 145 |