General Physics II (PHYS102) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
General Physics II PHYS102 2. Semester 3 2 0 4 6
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The goal of this course is, by giving the calculus-based concepts of electricity and magnetism, to establish the relationships between mathematics and fundamentals of electricity and magnetism and apply this knowledge to define and solve engineering problems.
Course Learning Outcomes The students who succeeded in this course;
  • To understand and apply solving problems of electricity and magnetism that lead to understanding the fundamentals of related fields in engineering sciences
  • To understand the conceptual topics of general physics and apply to engineering problems
  • To apply and integrate the basic science and the principles of engineering science
  • To understand how to elaborate topics of physical science, such as electricity, and apply to engineering problems
  • To provide a basic science oriented introduction for the engineering students to give them the opportunity to establish conceptual relations between the electricity and magnetism and a wide range of topics of engineering sciences.
Course Content Electric charge, electric fields, Gauss` law, electric potential, capacitance, current and resistance, circuits, magnetic fields, magnetic fields due to currents, induction and inductance.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Electric Charge and Electric Fields Douglas C. Giancoli, S.647-660
2 Electric Charge and Electric Fields Douglas C. Giancoli, S.660-672
3 Gauss’ Law Douglas C. Giancoli, S.683-692
4 Electric Potential Douglas C. Giancoli, S.718
5 Capacitance, Dielectrics, Electric Energy Storage Douglas C. Giancoli, S.727-739
6 Capacitance, Dielectrics, Electric Energy Storage Douglas C. Giancoli, S.739-753
7 Electric Currents and Resistance Douglas C. Giancoli, S.755-768
8 DC Circuits Douglas C. Giancoli, S.785-800
9 DC Circuits (cont.) Douglas C. Giancoli, S.801-815
10 Magnetism Douglas C. Giancoli, S.817-833
11 Sources of Magnetic Field Douglas C. Giancoli, S.845-857
12 Electromagnetic Induction and Faraday’s Law Douglas C. Giancoli, S.886
13 Electromagnetic Induction and Faraday’s Law Douglas C. Giancoli, S.886-895
14 Inductance Douglas C. Giancoli, S.907-916
15 Final Examination Period
16 Final Examination Period

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. X
2 Analyzes and identifies problems specific to manufacturing technologies. X
3 Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. X
4 Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability.
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications.
6 Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. X
7 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills.
8 Communicates effectively in both spoken and written Turkish and English. X
9 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. X
10 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering.
11 Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
12 Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 14 2 28
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 153