ECTS - Heat Transfer
Heat Transfer (ENE301) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Heat Transfer | ENE301 | 5. Semester | 3 | 1 | 0 | 3 | 6 |
| Pre-requisite Course(s) |
|---|
| (ENE203 veya MATE203 veya MECE310) |
| Course Language | English |
|---|---|
| Course Type | Compulsory Departmental Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving. |
| Course Lecturer(s) |
|
| Course Objectives | •To introduce the basic principles of heat transfer •To present a wealth of real- world engineering examples to give students a feel for how heat transfer is applied in engineering practice •To develop an intuitive understanding of heat transfer by emphasizing the physics and physical arguments. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Basic concepts of heat transfer; mechanisms of heat transfer (conduction, convection, radiation). |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Introduction and Basic Concepts | Chapter 1 |
| 2 | Heat Conduction Equation | Chapter 2 |
| 3 | Steady Heat Conduction | Chapter 3 |
| 4 | Transient Heat Conduction | Chapter 4 |
| 5 | Numerical Methods in Heat Conduction | Chapter 5 |
| 6 | Midterm Exam | |
| 7 | Fundamentals of Convection | Chapter 6 |
| 8 | External Forced Convection | Chapter 7 |
| 9 | Internal Forced Convection | Chapter 8 |
| 10 | Natural Convection | Chapter 9 |
| 11 | Boiling and Condensation | Chapter 10 |
| 12 | Midterm Exam | |
| 13 | Heat Exchangers | Chapter 11 |
| 14 | Fundamentals of Thermal Radiation | Chapter 12 |
| 15 | Radiation Heat Transfer | Chapter 13 |
| 16 | Final Exam |
Sources
| Course Book | 1. Heat and Mass Transfer, Fundamentals and Applications. Yunus A. Çengel, Afshin J. Ghajar, Fifth Edition, Mc-Graw Hill (2015) |
|---|---|
| 2. Incropera’s Principles of Heat and Mass Transfer. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, Global Edition, Wiley (2017) |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | 1 | 5 |
| Laboratory | - | - |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | 15 | 15 |
| Presentation | - | - |
| Project | - | - |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 2 | 60 |
| Final Exam/Final Jury | 1 | 40 |
| Toplam | 19 | 120 |
| Percentage of Semester Work | 60 |
|---|---|
| Percentage of Final Work | 40 |
| Total | 100 |
Course Category
| Core Courses | |
|---|---|
| Major Area Courses | X |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. | X | ||||
| 2 | Analyzes and identifies problems specific to manufacturing technologies. | X | ||||
| 3 | Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. | X | ||||
| 4 | Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. | X | ||||
| 5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
| 6 | Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. | X | ||||
| 7 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills. | |||||
| 8 | Communicates effectively in both spoken and written Turkish and English. | |||||
| 9 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
| 10 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering. | |||||
| 11 | Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
| 12 | Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions. | |||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
| Laboratory | |||
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 12 | 2 | 24 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | |||
| Homework Assignments | 15 | 2 | 30 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
| Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
| Total Workload | 152 | ||
