Energy Politics (IR423) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy Politics IR423 General Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Observation Case Study.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Şükrü Sina Gürel
Course Assistants
Course Objectives The aim of the course is to provide information on global and regional energy topics.
Course Learning Outcomes The students who succeeded in this course;
  • To acquire knowledge on global and regional energy issues
  • To learn energy geopolitics and energy security
  • To understand the Turkish energy policy and politics
Course Content Global and regional energy topics; energy sources; energy geopolitics and energy security; Turkish energy policy and politics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction None
2 Energy and Energy Sources Sevim(2012), Chapter 1
3 Energy and International Relations Sevim(2012), Chapter 1
4 Energy Scenarios 1 Sevim(2012), Chapter 2
5 Energy Scenarios 2 Sevim(2012), Chapter 2
6 Energy Security Sevim(2012), Chapter 3
7 Midterm Exam None
8 Russian Energy Politics Sevim(2012), Chapter 3
9 European Energy Politics Sevim(2012), Chapter 3
10 American Energy Politics Sevim(2012), Chapter 3
11 Energy Policy of China Sevim(2012), Chapter 4
12 Energy Policy of Iran Sevim(2012), Chapter 4
13 Energy Policy of Saudi Arabia Sevim(2012), Chapter 4
14 Energy Policies of Turkey Sevim (2012), Chapter 4
15 Discussion on the Final Exam and Conclusion None
16 Final Exam None

Sources

Course Book 1. Sevim, (2012), Küresel Enerji Stratejileri ve Jeopolitik, Seçkin Yayınları

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 30
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies.
2 Analyzes and identifies problems specific to manufacturing technologies.
3 Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments.
4 Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability.
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications.
6 Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions.
7 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills.
8 Communicates effectively in both spoken and written Turkish and English.
9 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself.
10 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering.
11 Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
12 Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125