ECTS - Scientific Toy Design
Scientific Toy Design (HUM202) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Scientific Toy Design | HUM202 | General Elective | 3 | 0 | 0 | 3 | 4 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | Turkish |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | Using scientific concepts in toy design, providing students to reach scientific awareness, developing the skill of using tools for scientific toy design, introduction of scientific toy types. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Developing students' using tools and skills in workshops; visiting science museums and science centers, observing large-scale scientific toys, and displaying all designed and produced scientific toys. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Meeting, introduction of the course. | Preparing a presentation |
2 | What is a scientific toy? Where to use? Why should it be done and played? What is its place in the education system? Are scientific toys just for kids? Does it contribute to the development of science and to the future of societies? Presentations will be made in an interactive discussion environment. | Preparing a presentation |
3 | Optical Workshop. Introduction of Electromagnetic Wave Spectrum. Display of the visible light region. Description of light-proof, semi-transparent and fully transparent materials. History of glass and mirror. Mirror types. Uses of mirrors. | Preparing a presentation |
4 | Making a kaleidoscope. Making a periscope. | Supply of materials |
5 | Acoustic Workshop. What is sound? What are the features? What frequency sounds do we use when speaking? Harmful sounds to the human ear. How does sound spread in different materials? How is sound insulation done? What are the features of the microphone and speaker? | Preparing a presentation |
6 | Making a rain stick. | Supply of materials |
7 | Introducing Forces. Making the moving paper toys. | Preparing a presentation Supply of materials |
8 | Moving toys with clothes pegs will be made. | Supply of materials |
9 | Science Center technical trip. | |
10 | Electricity and magnetism. Dancing copper wire toys. | Preparing a presentation Supply of materials |
11 | LED toy making | Supply of materials |
12 | Information will be given about eco systems and ecological balance. Plant Terrarium. | Preparing a presentation Supply of materials |
13 | Completing the missing projects. | |
14 | Completing the missing projects. | |
15 | End of the Year Exhibition | |
16 | End of the Year Exhibition |
Sources
Course Book | 1. 1. Alan Bartholomew, Electric Gadgets and Gizmos, Kids Can Press. |
---|---|
2. 2. Neil Ardley, 101 Great Science Experiments, DK Publishing, İnc. | |
3. 3. Ed Sobey, Inventing Toys Kids Having Fun Learning Science, Zephyr Press. | |
4. Ed Sobey, The Way Toys Work, Chicago Review Press. | |
5. 5. Georgina Andrews ve Kate Knighton, 100 Bilimsel Deney, TÜBİTAK Popüler Bilim Kitapları. | |
6. 6. Domenico Laurenza, Leonardo’nun Makineleri, Pegasus Yayınları. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 10 |
Laboratory | - | - |
Application | 1 | 25 |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 10 |
Presentation | 1 | 5 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | - | - |
Final Exam/Final Jury | 1 | 50 |
Toplam | 5 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. | |||||
2 | Analyzes and identifies problems specific to manufacturing technologies. | |||||
3 | Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. | |||||
4 | Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. | |||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
6 | Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. | |||||
7 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills. | |||||
8 | Communicates effectively in both spoken and written Turkish and English. | |||||
9 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
10 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering. | |||||
11 | Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
12 | Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | 14 | 3 | 42 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | 1 | 3 | 3 |
Project | |||
Report | |||
Homework Assignments | 1 | 3 | 3 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | |||
Prepration of Final Exams/Final Jury | 1 | 4 | 4 |
Total Workload | 100 |