Failure Analysis (ME431) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Failure Analysis ME431 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
ME210 ve ME316
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Types of failures. Macro and microfracture mechanisms. Causes of failures:defective material, faulty design, improper material selection, faulty manufacturing and construction, etc. Analysis of failures. Case studies.
Course Learning Outcomes The students who succeeded in this course;
  • Ability to analyze a complex system, system component or process and design under realistic constraints to meet desired requirements
Course Content Hata türleri, makro ve mikro çatlak mekanizmaları, hata nedenleri: defolu malzeme, yanlış tasarım, uygun olmayan malzeme seçimi, yanlış imalat ve montaj, hata analizi, vaka incelemeleri.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Causes and Mechanisms of Failure Chapter 1
2 Tools and Techniques Used in Failure Analysis Chapter 2
3 Fracture Types, Macro Fracture Properties Chapter 3
4 Microcharacteristics on Fractured Surfaces Chapter 4
5 Microcracks and Griffith Theory Chapter 5
6 Fracture Mechanics, Stress Concentration Chapter 6
7 Lineer Elastic Fracture Mechanics Chapter7
8 Elastic Plastic Fracture Mechanics Chapter 8
9 Fracture Toughness Tests Chapter 9
10 J Testing and CTOD Testing Chapter 10
11 Parameters Affecting Fracture Toughness Chapter 11
12 Fatique Crack Initiation Chapter 12
13 Environmentally Assisted Cracking in Metals Chapter 13
14 Environmentally Assisted Cracking in Metals Chapter 14
15 Final Exam Period All Chapters
16 Final Exam Period All Chapters

Sources

Course Book 1. Fracture Mechanics: Fundamentals and Applications, T.L. Anderson, CRC Press, 2017.
Other Sources 2. Practical Engineering Failure Analysis Hani M. Tawancy, Anwar Ul-Hamid, Nureddin M. Abbas, Marcel Dekker, 2004
3. Deformation and Fracture Mechanics of Engineering Materials, R. W. Hertzberg, John Wiley & Sons, 2013
4. Mechanical Behaviour of Engineering Materials, J. Rösler, Springer,2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 15
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies.
2 Analyzes and identifies problems specific to manufacturing technologies.
3 Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments.
4 Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability.
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications.
6 Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions.
7 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills.
8 Communicates effectively in both spoken and written Turkish and English.
9 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself.
10 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering.
11 Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
12 Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 1 10 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 130