ECTS - Fuel Cell Technologies
Fuel Cell Technologies (ENE412) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Fuel Cell Technologies | ENE412 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(ENE203 veya CEAC203) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Project Design/Management. |
Course Lecturer(s) |
|
Course Objectives | The course aims to provide deeper knowledge, a wider scope and improved understanding of theory, analysis, performance, design and the operational principles of various fuel cell components, systems, fuel processing and hydrogen infrastructure. To understand the current state of technology of stationary, automotive and portable fuel cell systems and components, and the challenges the industry faces today. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction: fuel cell operating principles,history,types,components and systems;fuel cell thermodynamics and electrochemistry:Nernst equation,Tafel equation,cell voltage,fuel cell efficiency and losses for operational fuel cell voltages;proton exchange membrane fuel cells:components and system, construction and performance, critical issues and recent developments;fuel cell stack design and calculations; hydrogen production, storage, safety and infrastructure; balance of fuel cell power plant |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Fuel Cell Technologies | |
2 | Fuel Cell Basic Chemistry and Thermodynamics | |
3 | Fuel Cell Basic Chemistry and Thermodynamics | |
4 | Fuel Cell Electrochemistry | |
5 | Fuel Cell Practice Studies | |
6 | Main PEM Fuel Cell Components and Materials Properties | |
7 | Midterm Exam | |
8 | PEM Fuel Cell Stack design | |
9 | PEM Fuel Cell Stack design | |
10 | Fuel Cell System Design | |
11 | Overview of Fuel Cell Types | Chapter 8 |
12 | Fuel Cell and Hydrogen Economy | |
13 | Term Project | |
14 | Term Project | |
15 | Term Project | |
16 | Final Exam |
Sources
Course Book | 1. PEM Fuel Cells: Theory and Practice, Frano Barbir, Elsevier Academic Press |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 25 |
Presentation | - | - |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 9 | 140 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. | |||||
2 | Analyzes and identifies problems specific to manufacturing technologies. | |||||
3 | Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. | |||||
4 | Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. | |||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
6 | Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. | |||||
7 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills. | |||||
8 | Communicates effectively in both spoken and written Turkish and English. | |||||
9 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
10 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering. | |||||
11 | Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
12 | Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 3 | 3 | 9 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 130 |