ECTS - Vehicle Aerodynamics
Vehicle Aerodynamics (AE422) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Vehicle Aerodynamics | AE422 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
AE307 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | To familiarize students with basic concepts of the flow phenomenon related to vehicles, the coupling between the fundamental theories of fluid dynamics and vehicle aerodynamics, evaluation of the aerodynamic properties of a vehicle by conducting wind tunnel tests as well as simulating numerical methods. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fundamentals of fluid mechanics; Navier-Stokes equations; analysis of aerodynamic drag, drag force calculation, and computational and experimental techniques to obtain drag coefficient. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | week 1 Fundamental fluid dynamics week 2 Fundamental fluid dynamics week 3 Resistance to vehicle motion and bluff body aerodynamics week 4 Drag coefficient of car and aerodynamics of passenger vehicles week 5 Aerodynamics performance - Fuel consumption week 6 Strategies for aerodynamic development week 7 Midterm 1 week 8 Automotive wind tunnel week 9 Wind tunnel tests week 10 Computational fluid dynamics week 11 Simulation of the flow around Ahmet body week 12 Simulation of the flow around Ahmet body week 13 Simulation of the flow around Ahmet body week 14 Simulation of the flow around Ahmet body week 15 Final project | AE 307 |
Sources
Course Book | 1. Automotive Aerodynamics, Joseph Kats, Wiley. |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | 1 | 15 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 15 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 40 |
Final Exam/Final Jury | - | - |
Toplam | 6 | 105 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. | |||||
2 | Analyzes and identifies problems specific to manufacturing technologies. | |||||
3 | Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. | |||||
4 | Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. | |||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
6 | Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. | |||||
7 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills. | |||||
8 | Communicates effectively in both spoken and written Turkish and English. | |||||
9 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
10 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering. | |||||
11 | Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
12 | Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | 1 | 3 | 3 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 4 | 56 |
Presentation/Seminar Prepration | 1 | 7 | 7 |
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 2 | 4 | 8 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 3 | 3 |
Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
Total Workload | 137 |