Nuclear Engineering I (ME611) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Nuclear Engineering I ME611 Elective Courses 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce the fundamentals of nuclear energy, neutron scattering, neutron diffusion theory, give details of nuclear power plants.
Course Learning Outcomes The students who succeeded in this course;
  • 1. Learning the the fundamentals of nuclear energy 2. Learning the basic principles of neutron diffusion theory
Course Content Atomic energy, radioactivity, neutron cross sections, neutron-atom interactions, neutron scattering, nuclear fission and fusion reactions, basic principles of neutron diffusion theory, nuclear power plants and classification.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to General Energy Types
2 Introduction to Nuclear Energy
3 Principles of Nuclear Energy
4 Atomic energy
5 Radioactivity
6 Neutron cross sections
7 Neutron-atom interactions
8 Neutron scattering
9 Nuclear fission and fusion reactions
10 Nuclear fission and fusion reactions
11 Basic principles of neutron diffusion theory
12 Basic principles of neutron diffusion theory
13 Nuclear power plants and classification
14 Nuclear power plants and classification

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 40
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Demonstrates the ability to conduct advanced research activities both individually and as a team member. X
2 Gains the competence to examine, evaluate, and interpret research topics through scientific reasoning. X
3 Develops new methods and applies them to original research areas and topics. X
4 Systematically acquires experimental and/or analytical data, discusses and evaluates them to reach scientific conclusions. X
5 Applies the scientific philosophical approach in the analysis, modeling, and design of engineering systems. X
6 Synthesizes knowledge in their field to create, maintain, complete, and present original studies at an international level. X
7 Contributes to scientific and technological advancements in their engineering field. X
8 Contributes to industrial and scientific progress to improve society through research activities. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 2 28
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 10 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 108