ECTS - Advanced Power Systems Analysis

Advanced Power Systems Analysis (ME653) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Power Systems Analysis ME653 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The students will understand the stability of a power system and will be able to the dynamics of a 3-phase synchronous machine during disturbances and will be compute the stability of a machine using the equal area criteria, and perform numerical integration to solve for the dynamic solution of a perturbed system in the single and multy machine system.
Course Learning Outcomes The students who succeeded in this course;
  • 1. Learning of analyzing power systems 2. Learning of modeling enrgy systems 3. Analysing of a single and multi-machine systems.
Course Content The definitions of stability in energy systems, simulation methods, swing equation, equal area criterion, mathematical model of synchronous machines, excitation and mechanical regulator models, multi-machine system modeling, numerical methods, and stability analysis of single and multi-machine systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 General Power Systems
3 Classification of Power Systems
4 Definitions of energy systems
5 Definitions of stability in energy systems
6 Simulation methods
7 Swing equation
8 Equal area criterion
9 Mathematical model of synchronous machines
10 Excitation and mechanical regulator models
11 Multi-machine system modelling, numerical methods
12 Stability analysis of a single and multi-machine systems
13 Application Work of Power Systems
14 Application Work of Power Systems

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to understand and apply knowledge in the fields of mathematics, science and basic sciences at the level of expertise. X
2 Gains the ability to access wide and deep knowledge in the field of Engineering by doing scientific research with current techniques and methods, evaluate, interpret and implement the gained knowledge. X
3 Being aware of the latest developments his/her field of study, defines problems, formulates and develops new and/or original ideas and methods in solutions. X
4 Designs and applies theoretical, experimental, and model-based research, analyzes and interprets the results obtained at the level of expertise. X
5 Gains the ability to use the applications, techniques, modern tools and equipment in his/her field of study at the level of expertise. X
6 Designs, executes and finalizes an original work process independently. X
7 Can work in interdisciplinary and interdisciplinary teams, lead teams, use the information of different disciplines together and develop solution approaches. X
8 Pays regard to scientific, social and ethical values in all professional activities and acquires responsibility consciousness at the level of expertise. X
9 Contributes to the literature by communicating the processes and results of his/her academic studies in written form or orally in national and international academic environments, communicates effectively with communities and scientific staff working in the field of specialization. X
10 Gains the skill of lifelong learning at the level of expertise. X
11 Communicates verbally and in written form using a foreign language at least at the European Language Portfolio B2 General Level. X
12 Recognizes the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, being aware of the limitations they place on engineering applications. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 2 12 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 86