Theory of Metal Cutting (MFGE541) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Metal Cutting MFGE541 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. S. Engin Kılıç
Course Assistants
Course Objectives The objective of this course is to introduce advanced topics in metal cutting theory. This approach will be employed to analyze mechanics of cutting, economy in cutting, alternative methods to cutting technology. Also, chip control and machine vibrations will be an within the scope. The course will also cover the computer aided manufacturing and design for machining.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have advanced knowledge on metal cutting operations.
  • Students will be able to design and analyze advanced processes in metal cutting technology.
  • Students will have advanced knowledge on metal cutting operations.
Course Content Introduction, machine tools and machining operations ?turning, drilling and milling, abrasive machining, mechanics of metal cutting; tool life and tool wear, economics of metal cutting operations, chip control, machine tool vibrations, grinding.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction; machine tools and machining operations
2 Introduction; machine tools and machining operations
3 Mechanics of metal cutting
4 Mechanics of metal cutting
5 Temperatures in metal cutting
6 Tool life and tool wear
7 Cutting fluids; surface integrity
8 Economics of Metal Cutting Operations
9 Geometry and materials of cutting tools
10 Chip Control
11 Machine tool vibrations
12 Grinding
13 Presentations and discussions on project reports
14 Presentations and discussions on project reports
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Boothroyd, G., Knight, W. A., Fundamentals of Machining and Machine Tools, 2nd Edition, Marcel Dekker, Inc., New York, 1985.
Other Sources 2. Altıntaş, Yusuf, “Manufacturing Automation Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design”, Cambridge University Press, 2000
3. Tlusty, George, “Manufacturing Processes and Equipment”, Prentice Hall, 1999

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 25
Toplam 6 100
Percentage of Semester Work 75
Percentage of Final Work 25
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to understand and apply knowledge in the fields of mathematics, science and basic sciences at the level of expertise.
2 Gains the ability to access wide and deep knowledge in the field of Engineering by doing scientific research with current techniques and methods, evaluate, interpret and implement the gained knowledge.
3 Being aware of the latest developments his/her field of study, defines problems, formulates and develops new and/or original ideas and methods in solutions.
4 Designs and applies theoretical, experimental, and model-based research, analyzes and interprets the results obtained at the level of expertise.
5 Gains the ability to use the applications, techniques, modern tools and equipment in his/her field of study at the level of expertise.
6 Designs, executes and finalizes an original work process independently.
7 Can work in interdisciplinary and interdisciplinary teams, lead teams, use the information of different disciplines together and develop solution approaches.
8 Pays regard to scientific, social and ethical values in all professional activities and acquires responsibility consciousness at the level of expertise.
9 Contributes to the literature by communicating the processes and results of his/her academic studies in written form or orally in national and international academic environments, communicates effectively with communities and scientific staff working in the field of specialization.
10 Gains the skill of lifelong learning at the level of expertise.
11 Communicates verbally and in written form using a foreign language at least at the European Language Portfolio B2 General Level.
12 Recognizes the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, being aware of the limitations they place on engineering applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration 1 8 8
Project 1 16 16
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 7 7
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 73