Theory of Metal Forming (MFGE542) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Metal Forming MFGE542 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Celalettin Karadoğan
Course Assistants
Course Objectives This course aims to give the students the in-depth understanding of mechanics of metal forming .
Course Learning Outcomes The students who succeeded in this course;
  • Students will learn the basics of plasticity
  • Students will understand the fundamentals of metal working
  • Students will attain proficiency in basic metal forming techniques, forging, extrusion, drawing and rolling.
Course Content Elements of the theory of plasticity, fundamentals of metal working, forging process, rolling process, extrusion process, drawing of rods, wires and tubes, sheet metal forming process, high energy rate forming.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Chapter 1: ELEMENTS OF THE THEORY OF PLASTICITY: Flow curves, True stress and strain, yield criteria for ductile metals, Von Mise’s criterion, Tresca criterion.
2 Chapter 2:FUNDAMENTALS OF METAL WORKING: Classification of forming processes, Mechanics of Metal working – slab method, flow stress determination, Temperature in Metal working, Hot working, Cold working, Warm working, strain - rate effects, metallurgical structure, friction and Lubrication.
3 Chapter 3: FORGING PROCESS: Classification of forging operation, forging equipment, forging strain, open die forging – closed die forging, die forging load forging defects.
4 Chapter 3: FORGING PROCESS: Classification of forging operation, forging equipment, forging strain, open die forging – closed die forging, die forging load forging defects.
5 Chapter 4: ROLLING OF METALS: Classification of rolling mills, hot and cold rolling forces and geometrical relationships in rolling, simplified analysis of rolling load, defects in rolled products, theories of cold and hot rolling, calculation torque and power required.
6 Chapter 4: ROLLING OF METALS: Classification of rolling mills, hot and cold rolling forces and geometrical relationships in rolling, simplified analysis of rolling load, defects in rolled products, theories of cold and hot rolling, calculation torque and power required.
7 Chapter 5: EXTRUSION: Classification, equipments used, hot extrusion, deformation, lubrication and defects in extrusion, analysis of extrusion processes, hydrostatic extrusion, tube extrusion, production of seamless pipe and tubing.
8 Chapter 5: EXTRUSION: Classification, equipments used, hot extrusion, deformation, lubrication and defects in extrusion, analysis of extrusion processes, hydrostatic extrusion, tube extrusion, production of seamless pipe and tubing.
9 Chapter 6: DRAWING OF RODS, WIRES AND TUBES: Rod and wire drawing process, drawing dies, analysis of wire drawing, Tandem drawing process, residual stress in rod, wire and tube drawing. Defects in drawing, tube drawing.
10 Chapter 6: DRAWING OF RODS, WIRES AND TUBES: Rod and wire drawing process, drawing dies, analysis of wire drawing, Tandem drawing process, residual stress in rod, wire and tube drawing. Defects in drawing, tube drawing.
11 Chapter 7: SHEET METAL FORMING PROCESS: Introduction, Forming methods, shearing, blanking, punching, bending, spring back, elimination of spring back, spinning, deep drawing stretch forming, redrawing, reverse drawing, defects in drawing, factors affecting drawability ration.
12 Chapter 7: SHEET METAL FORMING PROCESS: Introduction, Forming methods, shearing, blanking, punching, bending, spring back, elimination of spring back, spinning, deep drawing stretch forming, redrawing, reverse drawing, defects in drawing, factors affecting drawability ration.
13 Chapter 8: HIGH ENERGY RATE FORMING (HERF): Introduction to HERF, Process advantages, explosive forming electro discharge forming and electromagnetic forming, Rubber forming.
14 Chapter 8: HIGH ENERGY RATE FORMING (HERF): Introduction to HERF, Process advantages, explosive forming electro discharge forming and electromagnetic forming, Rubber forming.
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Mechanical Metallurgy - Dieter. G. E - McGraw Hill, 2001
Other Sources 2. Principle of Industrial metal working process–Rowe Edward Arnold, London, CBS Publishers - 2002.
3. Mikell P. Groover, Fundamentals of Modern Manufacturing, Materials, Processes and Systems.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 30
Toplam 7 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to understand and apply knowledge in the fields of mathematics, science and basic sciences at the level of expertise.
2 Gains the ability to access wide and deep knowledge in the field of Engineering by doing scientific research with current techniques and methods, evaluate, interpret and implement the gained knowledge.
3 Being aware of the latest developments his/her field of study, defines problems, formulates and develops new and/or original ideas and methods in solutions.
4 Designs and applies theoretical, experimental, and model-based research, analyzes and interprets the results obtained at the level of expertise.
5 Gains the ability to use the applications, techniques, modern tools and equipment in his/her field of study at the level of expertise.
6 Designs, executes and finalizes an original work process independently.
7 Can work in interdisciplinary and interdisciplinary teams, lead teams, use the information of different disciplines together and develop solution approaches.
8 Pays regard to scientific, social and ethical values in all professional activities and acquires responsibility consciousness at the level of expertise.
9 Contributes to the literature by communicating the processes and results of his/her academic studies in written form or orally in national and international academic environments, communicates effectively with communities and scientific staff working in the field of specialization.
10 Gains the skill of lifelong learning at the level of expertise.
11 Communicates verbally and in written form using a foreign language at least at the European Language Portfolio B2 General Level.
12 Recognizes the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, being aware of the limitations they place on engineering applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 16 6 96
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 8 32
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 7 14
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 189