ECTS - Numerical Solution of Differential Equations

Numerical Solution of Differential Equations (MDES620) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Numerical Solution of Differential Equations MDES620 3 0 0 3 5
Pre-requisite Course(s)
Math 276 Differential Equations
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to give engineering students in graduate level the expertise necessary to understand and use computational methods for the approximate/numerical solution of differential equations problems that arise in many different fields of science.
Course Learning Outcomes The students who succeeded in this course;
  • At the end of the course the students are expected to: 1-Choose an efficient method to solve the differential equation(s) coming from a certain application field, 2- Investigate the stability and convergence properties of the methods, 3- Recognize some of the numerical difficulties that can occur when solving problems arising in scientific applications.
Course Content Numerical solution of initial value problems; Euler, multistep and Runge-Kutta methods; numerical solution of boundary value problems; shooting and finite difference methods; stability, convergence and accuracy; numerical solution of partial differential equations; finite difference methods for parabolic, hyperbolic and elliptic equations; explic

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 1. Week Review to differential equations 2. Week Numerical solutions of initial value problems; Euler, multistep and Runge-Kutta methods 3. Week Numerical solutions of initial value problems; Euler, multistep and Runge-Kutta methods 4. Week Numerical solutions of boundary value problems; finite difference methods 5. Week Numerical solutions of boundary value problems; finite difference methods 6. Week Stability, convergence and accuracy of the numerical techniques given 7. Week Stability, convergence and accuracy of the numerical techniques given 8. Week Midterm Exam 9. Week Partial differential equations and their solutions 10. Week Numerical solution of partial differential equations; finite difference methods 11. Week Numerical solution of partial differential equations; finite difference methods 12. Week Numerical solution of parabolic, hyperbolic and elliptic equations by finite difference methods 13. Week Explicit and implicit methods, Crank-Nicolson method 14. Week Explicit and implicit methods, Crank-Nicolson method. System of ordinary differential equations 15. Week Convergence, stability and consistency analysis of the methods 16. Week Final Exam

Sources

Course Book 1. 1. Numerical Solution of Partial Differential Equations by K.W. Morton and D.F. Mayers, Cambridge University Press, 1994. 2.Numerical Analysis of Differential Equations by A. Iserles, Cambridge University Press, 1996.
Other Sources 2. 1.Computer Methods for ODEs and Differential-Algebraic Equations by U.M. Ascher & L.R. Petzold, SIAM, 1998. 2.Numerical Solution of Partial Differential Equations: Finite Difference Methods by G.D. Smith, Clarendon Press, Oxford, 1985.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to understand and apply knowledge in the fields of mathematics, science and basic sciences at the level of expertise.
2 Gains the ability to access wide and deep knowledge in the field of Engineering by doing scientific research with current techniques and methods, evaluate, interpret and implement the gained knowledge.
3 Being aware of the latest developments his/her field of study, defines problems, formulates and develops new and/or original ideas and methods in solutions.
4 Designs and applies theoretical, experimental, and model-based research, analyzes and interprets the results obtained at the level of expertise.
5 Gains the ability to use the applications, techniques, modern tools and equipment in his/her field of study at the level of expertise.
6 Designs, executes and finalizes an original work process independently.
7 Can work in interdisciplinary and interdisciplinary teams, lead teams, use the information of different disciplines together and develop solution approaches.
8 Pays regard to scientific, social and ethical values in all professional activities and acquires responsibility consciousness at the level of expertise.
9 Contributes to the literature by communicating the processes and results of his/her academic studies in written form or orally in national and international academic environments, communicates effectively with communities and scientific staff working in the field of specialization.
10 Gains the skill of lifelong learning at the level of expertise.
11 Communicates verbally and in written form using a foreign language at least at the European Language Portfolio B2 General Level.
12 Recognizes the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, being aware of the limitations they place on engineering applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 5 25
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 131