ECTSEngineering Decision and Risk Analysis

Engineering Decision and Risk Analysis (MDES631) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Engineering Decision and Risk Analysis MDES631 Elective Courses 3 0 0 3 5
Pre-requisite Course(s)
CE 205 Introduction to Probability and Statistics for Engineers
Course Language English
Course Type Elective Courses Taken From Other Departments
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To provide the student with an understanding of the basic concepts of risk analysis and the relationship between probability theory and modeling, risk and decision analysis.
Course Learning Outcomes The students who succeeded in this course;
  • Students can apply probability theory to engineering problems. Students can apply risk analysis to engineering problems.
Course Content Basic notions of probability, random variables, functions of random variables distributions, moments; first and second-order approximations; probability models for engineering analysis; Bernoulli sequence, binomial distribution, Poisson and related distributions, normal and related distributions, extreme-value distributions, other distributions us

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Probability and Statistics in Engineering 1-25
2 Fundamentals of Probability Models 27-39
3 Probability Models 96-131
4 Probability Models 132-150
5 Functions of Random Variables 151-190
6 Statistical Interference 245-259
7 Statistical Interference 262-269
8 Determination of Probability Distribution Models 278-288
9 Determination of Probability Distribution Models 289-301
10 Regression and Correlation 306-313
11 Regression and Correlation 318-339
12 Bayesian Analysis 346-357
13 Bayesian Analysis 360-368
14 Bayesian Analysis 372-381
15 Overall review -
16 Final exam -

Sources

Course Book 1. Ang, A. H. S. and Tang, W. H., Probability Concepts in Engineering, Joh Wiley
Other Sources 2. Ders Notları

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 50
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 7 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to understand and apply knowledge in the fields of mathematics, science and basic sciences at the level of expertise.
2 Gains the ability to access wide and deep knowledge in the field of Engineering by doing scientific research with current techniques and methods, evaluate, interpret and implement the gained knowledge.
3 Being aware of the latest developments his/her field of study, defines problems, formulates and develops new and/or original ideas and methods in solutions.
4 Designs and applies theoretical, experimental, and model-based research, analyzes and interprets the results obtained at the level of expertise.
5 Gains the ability to use the applications, techniques, modern tools and equipment in his/her field of study at the level of expertise.
6 Designs, executes and finalizes an original work process independently.
7 Can work in interdisciplinary and interdisciplinary teams, lead teams, use the information of different disciplines together and develop solution approaches.
8 Pays regard to scientific, social and ethical values in all professional activities and acquires responsibility consciousness at the level of expertise.
9 Contributes to the literature by communicating the processes and results of his/her academic studies in written form or orally in national and international academic environments, communicates effectively with communities and scientific staff working in the field of specialization.
10 Gains the skill of lifelong learning at the level of expertise.
11 Communicates verbally and in written form using a foreign language at least at the European Language Portfolio B2 General Level.
12 Recognizes the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, being aware of the limitations they place on engineering applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 6 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 135