ECTS - Biomimetic and Bioinspired Engineering Design

Biomimetic and Bioinspired Engineering Design (MDES641) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Biomimetic and Bioinspired Engineering Design MDES641 3 0 0 3 5
Pre-requisite Course(s)
Consent of the instructor
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course intends to give a sound background and advanced practice about biomimetic design with an extensive study on a biological systems and a capstone design practice on a similar topic in engineering domain. The course aims to develop fundamental design phenomena of the design in nature. The course aims to bridge biological systems domain and engineering systems domain on several case studies. Students will gain the ability of designing robot-like machines mimicking biological systems.
Course Learning Outcomes The students who succeeded in this course;
  • This course is an advanced application course of the background knowledge on engineering for biomimetic design of machines, systems, and robots.
Course Content definitions, terminology and concepts in biomimetics; review of biological systems for kinematic and dynamic analysis, for structural analysis, and for behavioral modeling; reverse engineering as applied to biological systems; mapping concepts of biological systems on the engineering systems; theories and application principles of modeling and scal

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 What is biomimetics, Historical development and trends. Biomimetic success stories Case studies. -
2 Modeling of systems in biology domain; Kinematic and dynamic analysis. -
3 Modeling of systems in biology domain; Materials, Force, and stress analysis. -
4 Modeling of systems in biology domain; Behavioral analysis, cognitive systems. -
5 Case Studies -
6 Case Studies. -
7 Modeling of systems in engineering domain; Concepts and conceptual design. -
8 Modeling of systems in engineering domain; Models and scaling theories. -
9 Case Studies -
10 Mapping of systems in biology and engineering domains; Concepts and theories. -
11 Mapping of systems in biology and engineering domains; Concepts and theories. -
12 Case Studies. -
13 Case Studies -
14 Case Studies. -
15 Overall review -
16 Final exam -

Sources

Course Book 1. Notlar / Lecture notes

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 4 10
Homework Assignments - -
Presentation - -
Project 2 40
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 20
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to understand and apply knowledge in the fields of mathematics, science and basic sciences at the level of expertise.
2 Gains the ability to access wide and deep knowledge in the field of Engineering by doing scientific research with current techniques and methods, evaluate, interpret and implement the gained knowledge.
3 Being aware of the latest developments his/her field of study, defines problems, formulates and develops new and/or original ideas and methods in solutions.
4 Designs and applies theoretical, experimental, and model-based research, analyzes and interprets the results obtained at the level of expertise.
5 Gains the ability to use the applications, techniques, modern tools and equipment in his/her field of study at the level of expertise.
6 Designs, executes and finalizes an original work process independently.
7 Can work in interdisciplinary and interdisciplinary teams, lead teams, use the information of different disciplines together and develop solution approaches.
8 Pays regard to scientific, social and ethical values in all professional activities and acquires responsibility consciousness at the level of expertise.
9 Contributes to the literature by communicating the processes and results of his/her academic studies in written form or orally in national and international academic environments, communicates effectively with communities and scientific staff working in the field of specialization.
10 Gains the skill of lifelong learning at the level of expertise.
11 Communicates verbally and in written form using a foreign language at least at the European Language Portfolio B2 General Level.
12 Recognizes the social, environmental, health, safety, legal aspects of engineering applications, as well as project management and business life practices, being aware of the limitations they place on engineering applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 2 20 40
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 10 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 134