Industrial Economics (IE415) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Industrial Economics IE415 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The purpose of this course is to introduce the student to the major areas encompassed by industrial organization, focusing on modern theoretical approaches and also on recent empirical studies.
Course Learning Outcomes The students who succeeded in this course;
  • Students will recognize that there are complexities in our understanding of the relevant market for competition purposes and that there are a number of competing perspectives in industrial economics which make public policy decisions problematic.
  • Students will acquire knowledge about what a concentration ratio is.
  • Students will be able to define industrial economics.
  • Students will be able to assess the definition of an industry.
  • Students will be able to compare and contrast various perspectives in industrial economics.
Course Content Competitive markets, real world institutions, and the internal organization of firms; price discrimination; vertical control; oligopoly theory; product differentiation under oligopoly; entry, entry deterrence and predation; new empirical industrial organization; non-cooperative game theory.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Monopoly
2 Product Differentiation
3 Price Discrimination
4 Vertical Control
5 Oligopoly Theory
6 Product Differentiation under Oligopoly
7 Midterm I
8 Entry, Entry Deterrence, and Predation
9 Entry, Entry Deterrence, and Predation
10 Information and Strategic Behavior
11 Traditional Industrial Organization: A Review
12 Midterm II
13 New Empirical Industrial Organization
14 New Empirical Industrial Organization
15 International Trade and Industrial Organization
16 Final Examination Period


Course Book 1. Tirole, J., The Theory of Industrial Organization, MIT Press, 1988.
Other Sources 2. -

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science and engineering to Industrial Engineering; an ability to apply theoretical and practical knowledge to model and solve engineering problems.
2 An ability to identify, formulate and solve complex engineering problems; an ability to select and apply proper analysis and modeling methods.
3 An ability to design a complex system, process, tool or component to meet desired needs within realistic constraints; an ability to apply modern design.
4 An ability to develop, select and put into practice techniques, skills and modern engineering tools necessary for engineering practice; an ability to use information technology effectively. X
5 An ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or disciplinary research topics.
6 An ability to work individually, on teams, and/or on multidisciplinary teams.
7 Ability to communicate effectively in Turkish orally and in writing; knowledge of at least one foreign language; effective report writing and understand written reports, preparing design and production reports, making effective presentations, giving and receiving clear and understandable instruction.
8 A recognition of the need for, and an ability to engage in life-long learning; an ability to use information-seeking tools and to follow the improvements in science and technology.
9 An ability to behave according to the ethical principles, an understanding of professional and ethical responsibility. Information on standards used in industrial engineering applications.
10 Knowledge of business applications such as project management, risk management and change management. A recognition of entrepreneurship, innovativeness. Knowledge of sustainable improvement. X
11 Information on the effects of industrial engineering practices on health, environment and security in universal and societal dimensions and the information on the problems of the in the field of engineering of the era. Awareness of the legal consequences of engineering solutions.
12 An ability to design, development, implementation and improvement of integrated systems that include human, materials, information, equipment and energy.
13 Knowlede on appropriate analytical, computational and experimental methods to provide system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 7 14
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125