Biomaterials (MATE460) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Biomaterials MATE460 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To give issues of biomaterials’ behavior, toxicology, and biocompatibility; the properties, performance, and use of biomaterials in order to teach the fundamental principles of biomaterials to all engineers, biologists, medical doctors
Course Learning Outcomes The students who succeeded in this course;
  • Students obtain a wealth of valuable data and get experience that will be of use to all bioengineers, materials scientists, and practicing physicians concerned with the properties, performance, and use of materials—from research engineers faced with selecting materials for given tasks to physicians and surgeons interested in materials’ biocompatibility, behavior, and toxicology.
Course Content Definition of biomaterial,biocompatibility,host response,synthetic and biological materials,synthetic biomaterial classes,polymers in the body,implant factors,host factors,categories of biomaterial applications,evaluation of biomaterials,historical evaluation of implants,current work in biomaterials, motivation for future directions,current trends.Properties of materials;bulk properties of materials, mechanical properties of materials;comparison of common surface analysis methods;

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Definition of biomaterial, biocompatibility, host response Related pages of the given sources
2 Synthetic and biological materials Related pages of the given sources
3 Categories of biomaterial applications Related pages of the given sources
4 Evaluation of biomaterials, historical evaluation of implants Related pages of the given sources
5 Current work in biomaterials
6 Motivation for future directions Related pages of the given sources
7 Current trends Related pages of the given sources
8 Midterm 1
9 Properties of materials; bulk properties of materials Related pages of the given sources
10 Mechanical properties of materials Related pages of the given sources
11 Comparison of common surface analysis methods Related pages of the given sources
12 Sterilisation Methods of Biomaterials Related pages of the given sources
13 Polymers as Biomaterials Related pages of the given sources
14 Evaluation of student presentations
15 Recitation before final exam
16 Final Exam

Sources

Other Sources 1. Biomaterials An Introduction, Joon Park, R.S. Lakes, 3rd Edition, Springer, 2007.
2. Biomaterials Principles and Applications, Joon Park, Joseph D. Bronzino, CRC Press, 2003.
3. Biomaterials and Bioengineering Handbook, Donald L. Wiss, 2003.
4. Biomaterials in the Design and Reliability of Medical Devices, Michael N. Helmus, Eurekah, 2002.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills.
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself.
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 8 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125