Nanomaterials (MATE462) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Nanomaterials MATE462 3 0 0 3 5
Pre-requisite Course(s)
2nd year engineering must courses
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Introduction to Nanotechnology concepts; Fundamentals, applications and novel materials
Course Learning Outcomes The students who succeeded in this course;
  • Course assumes that students have no previous knowledge. Course will provide student with: • Basic knowledge on nanotechnology fundamentals • Current trends and future overview of nanotechnology • Tool and metrology applications (optical and probe techniques) • New and novel materials by nanotechnology • Literature experience • In class presentation experience • Analysis and reporting experience • Real industry application experience
Course Content Nanotechnology fundamentals, history, applications and novel materials; synthesis and application of nanomaterials and their application in industry in relation to existing technology applications; future trends and emerging technologies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to nanotechnology: Basics and advantages from industry perspective. Health, safety and handling: Maintenance and application and required infrastructure
2 Nanomaterials and their synthesis: Chemical and physical synthesis methods of inorganic, organic and magnetic nanoparticles
3 Molecular properties of materials: A general overview on surfaces, interfaces and bulk properties with respect to nanomodification
4 Nanometrology: Tools and applications used in nanoscale characterization
5 Metals, oxides, and semimetal nanomaterials
6 Organic and magnetic nanomaterials: Bionanomaterials, magnetic agents and organic-inorganic interaction
7 Synthesis and preparation of nanomaterials
8 Nanopatterning and nanofunctionalization of surfaces: Nanomachining and spatial modification
9 In class student project presentation
10 In class student project presentation
11 In class student project presentation
12 In class student project presentation
13 In class student project presentation
14 In class student project presentation
15 In class student project presentation
16 Final Exam

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 40
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury - -
Toplam 2 65
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills.
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself.
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 22 22
Report
Homework Assignments 6 3 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 50