# General Physics I (PHYS101) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
General Physics I PHYS101 3 2 0 4 6
Pre-requisite Course(s)
N/A
Course Language English N/A Bachelor’s Degree (First Cycle) Face To Face . The goal of this course is, by providing the calculus-based concepts of mechanics, to establish the relationships between mathematics, physics and engineering and apply the physical science to define and solve engineering problems. The students who succeeded in this course; To understand and apply solving problems of mechanics that lead to the understanding the fundamentals of related fields in engineering sciences. To understand the conceptual topics of mechanics and apply to engineering problems. To apply and integrate the basic science and the principles of engineering science. To enhance students` ability and motivation to solve unsolved problems in various fields To provide a useful introduction to the subject for engineering students to give them the opportunity to establish conceptual relations between mechanics and a wide range of topics of engineering science Measurement, motion along a straight line, vectors, motion in two and three dimensions, force and motion I, force and motion II, kinetic energy and work, potential energy and conservation of energy, center of mass and linear momentum, rotation, rolling, torque, and angular momentum, equilibrium and elasticity.

### Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Measurement, Estimating Physics for Scientists & Engineers with Modern Physics, Douglas C. Giancoli, Chapter 1 and Phys101 Laboratory Manual Introduction
2 Kinematics in One Dimension Douglas C. Giancoli, S. 27-38
3 Kinematics in One Dimension Douglas C. Giancoli, S.39-49
4 Kinematics in Two and Three Dimensions; Vectors Douglas C. Giancoli, S. 65-76
5 Kinematics in Two and Three Dimensions; Vectors Douglas C. Giancoli, S. 76-85
6 Newton’s Laws of Motion Douglas C. Giancoli, S.101-119
7 Using Newton’s Laws: Friction, Circular Motion Douglas C. Giancoli, S.134-151
8 Using Newton’s Laws: Friction, Circular Motion Douglas C. Giancoli, S.141-153
9 Work and Energy Douglas C. Giancoli, S.193-206
10 Conservation of Energy Douglas C. Giancoli, S.217-239
11 Linear Momentum Douglas C. Giancoli, S.252-273
12 Rotational Motion Douglas C. Giancoli, S.290-305
13 Rotational Motion Douglas C. Giancoli, S.305-317
14 Angular Momentum; General Rotation Douglas C. Giancoli, S.332-350
15 Final Examination Period
16 Final Examination Period

### Sources

Course Book 1. Physics for Scientists & Engineers with Modern Physics, Douglas C. Giancoli (4th edition), Pearson (2014)

### Evaluation System

Attendance/Participation - -
Laboratory 1 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
 Percentage of Semester Work 70 30 100

### Course Category

Core Courses X

### The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. X
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. X
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills. X
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself.
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 14 2 28
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15