Linear Algebra (MATH275) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Linear Algebra MATH275 4 0 0 4 6
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to enrich the knowledge of engineering students in linear algebra, and to teach them the basics and application of the methods for the solution of linear systems occurring in engineering problems.
Course Learning Outcomes The students who succeeded in this course;
  • understand the notion of matrix and perform algebraic operations on matrices, find the inverse of a nonsingular matrix, solve linear systems by using echelon form of matrices, determine the existence and uniquness of the solution and determine infinitely many solutions, if any
  • makes sense of vector spaces, subspaces, linear independence, basis and dimensions and rank of a matrix,
  • comprehend and use inner product, Gram-Schmidt process, orthogonal complements,
  • understand and use linear transformation and associated matrices,
  • evaluate determinants and solve linear systems with unique solution via determinant (Cramer’s Rule),
  • understand and find eigenvalues and eigenvectors, determine if a matrix is diagonalizable, and if it is, diagonalize it.
Course Content Linear equations and matrices, real vector spaces, inner product spaces, linear transformations and matrices, determinants, eigenvalues and eigenvectors.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Systems of Linear Equations, Matrices, Matrix Multiplication, Algebraic Properties of Matrix Operations pp. 1-39
2 Special Types of Matrices and Partitioned Matrices, Echelon Form of a Matrix, Solving Linear Systems pp. 42-49, 86-93, 95-103, 111-113
3 Elementary Matrices; Finding Inverses, Equivalent Matrices pp. 117-124, 126-129
4 Determinants, Properties of Determinants, Cofactor Expansion pp. 141-145, 146-154, 157-163
5 Inverse of a Matrix (via Its Determinant), Other Applications of Determinants (Cramer’s Rule) pp. 165-168, 169-172
6 Vectors in the Plane and In 3-D Space, Vector Spaces, Subspaces pp. 177-186, 188-196, 197-203
7 Span, Linear Independence, Basis and Dimension pp. 209-214, 216-226, 229-241
8 Homogeneous Systems, Coordinates and Isomorphism, Rank of a Matrix pp. 244-250, 253-266, 270-281
9 Inner Product Spaces, Gram-Schmidt Process pp. 290-296, 307-317, 320-329
10 Orthogonal Complements, Linear Transformations and Matrices pp. 332-343, 363-372
11 Kernel and Range of a Linear Transformation pp. 375-387
12 Matrix of a Linear Transformation pp. 389-397
13 Eigenvalues and Eigenvectors pp. 436-449
14 Diagonalization and Similar Matrices, Diagonalization of Symmetric Matrices pp. 453-461, 463-472
15 General Review
16 Final Exam


Course Book 1. Elementary Linear Algebra, B. Kolman and D.R. Hill, 9th Edition, Prentice Hall, New Jersey, 2008
Other Sources 2. Linear Algebra, S. H. Friedberg, A. J. Insel, L. E. Spence, Prentice Hall, New Jersey, 1979
3. Basic Linear Algebra, Cemal Koç, Matematik Vakfı Yay., Ankara, 1996

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. X
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. X
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills. X
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself.
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Special Course Internship
Field Work
Study Hours Out of Class 14 4 56
Presentation/Seminar Prepration
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 86