Engineering Economy (IE305) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Engineering Economy IE305 2 0 0 2 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Dr. Öğr. Üyesi Cihan Tuğrul ÇİÇEK
Course Assistants
Course Objectives This course aims to introduce the economic dimension of evaluating and selecting alternative investment projects. By the end of the course, the student will be able to investigate engineering economy problems, and formulate and solve such problems using appropriate conceptual and mathematical skills and modeling structures.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to identify the principles and methods necessary to evaluate and select engineering alternatives.
  • Students will be able to discuss the concepts of time value of money and interest rates.
  • Students will be able to recognize, formulate, and analyze cash flow models in practical situations.
  • Students will be able to analyze cash flow series using present value, future worth, annual worth, and rate of return methods.
  • Students will be able to develop cash flow series considering the effects of depreciation, taxes and inflation
  • Students will be able to analyze decision problems related to equipment replacement.
  • Students will be able to interpret economy studies and investment decisions in the public sector.
Course Content Economic analysis for engineering and managerial decision-making; cash flows, effect of time and interest rate on money and physical assets; methods of evaluating alternatives: present worth, future worth, annual worth, rate-of-return and benefit/cost ratios; depreciation and taxes; effects of inflation.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Foundations of Engineering Economy [1] pages 1-25
2 How time and interest affect money: single payment formulas [1] pages 27-33
3 How time and interest affect money: single payment formulas (cont) [1] pages 27-33
4 How time and interest affect money: uniform series formulas [1] pages 34-36
5 How time and interest affect money: gradient formulas and shifted cash flows [1] pages 37-57
6 Nominal and effective interest rates [1] page 59-78
7 Present worth analysis [1] page 80-106
8 Annual worth analysis [1] pages 107-123
9 Rate of return analysis [1] pages 124-159
10 Benefit/Cost analysis and public sector projects [1] pages 160-181
11 Effects of inflation [1] pages 237-258
12 Midterm
13 Unit method, cost indexes, cost-capacity equations, factor method, unit cost estimation [1] pages 259-286
14 Depreciation methods [1] pages 287-311
15 After-tax economic analysis [1] pages 312-347
16 Final Examination Period

Sources

Course Book 1. Basics of Engineering Economy, Leland Blank, Anthony Tarquin, McGraw-Hill Education
Other Sources 2. Contemporary Engineering Economics, CS Park, 3rd Edition, Addison Wesley, 1997.
3. Engineering Economy, GJ Thuesen & WJ Fabrycky, 9th Edition, Prentice Hall, 2001

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. X
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills.
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself.
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 7 7
Total Workload 125