ECTS - Boundary Element Method
Boundary Element Method (MFGE508) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Boundary Element Method | MFGE508 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to introduce the general concepts in Boundary Element Method for the solution of engineering problems. The method will be applied to Laplace equation and elastostatics, but the course will give the tools for expanding the procedure. The course will also cover the parallel solution strategy. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction, preliminary concepts, vector and tensor algebra, indicial notation, divergence theorem, Dirac delta function; singular integrals, Cauchy principal value integrals in 1 and 2D, boundary element formulation for Laplace equation, Laplace equation; discretization, boundary element formulation for elastostatics, elastostatics, discretizati |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction; Preliminary Concepts: vector and tensor algebra, indicial notation. | |
2 | Vector algebra, Divergence theorem, dirac delta function. | |
3 | Singular integrals; Cauchy principal value integrals in 1D and 2D. | |
4 | Boundary Element Formulation for Laplace equation. | |
5 | Boundary Element Formulation for Laplace equation. | |
6 | Laplace equation: Discretization (constant and linear elements). | |
7 | Laplace equation: Discretization (quadratic elements). | |
8 | Boundary Element Formulation for Elastostatics. | |
9 | Boundary Element Formulation for Elastostatics. | |
10 | Elastostatics: Discretization (constant and linear elements). | |
11 | Elastostatics: Discretization (quadratic elements). | |
12 | Fundamental solutions. | |
13 | Numerical methods for singular integrals, Analytical solutions. | |
14 | Parallel solution strategy. | |
15 | Final Examination Period | |
16 | Final Examination Period |
Sources
Course Book | 1. Paris, F., Canas, J., Boundary Element Method: Fundamentals and Applications, Oxford University Press, 1997. |
---|---|
Other Sources | 2. Banerjee, P. K., Butterfield, R., Boundary Element Methods in Engineering Science, McGraw-Hill, 1981. |
3. Brebbia, C. A., Telles, J. C. F., Wrobel, L. C., Boundary Element Techniques, Springer-Verlag, 1984. | |
4. Cartwright, D. J., Underlying Principles of the Boundary Element Method, WIT Press, 2001. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 6 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. | X | ||||
2 | Develops the ability to analyze and define issues related to manufacturing technologies. | X | ||||
3 | Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments. | X | ||||
4 | Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability. | X | ||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | X | ||||
6 | Performs research in manufacturing engineering and implements projects involving innovative manufacturing technologies. | X | ||||
7 | Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions. | X | ||||
8 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. | X | ||||
9 | Communicates effectively in both spoken and written Turkish and English. | X | ||||
10 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | X | ||||
11 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering. | X | ||||
12 | Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | X | ||||
13 | Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | 16 | 2 | 32 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 6 | 96 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 6 | 6 | 36 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | |||
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 179 |