Applied Solid Mechanics (CE521) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Applied Solid Mechanics CE521 3 0 0 3 5
Pre-requisite Course(s)
None
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Observation Case Study, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Tolga AKIŞ
Course Assistants
Course Objectives To develop an ability to analyze the mechanical problems using the mechanics of materials approach and theory of elasticity. To introduce advanced topics in solid mechanics.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to use the principles of the mechanics of materials approach and theory of elasticity in solving mechanical problems
  • Students will be able to understand the fundamentals of energy methods used in mechanics of deformable bodies.
  • Students will be able to understand the plastic behavior of deformable bodies.
Course Content Analysis of stress and strain, stress-strain relations, plane strain and plane stress problems, yield and failure criteria, unsymmetrical bending of beams, energy methods, buckling of columns, plastic behavior of structural members.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Analysis of Stress
2 Analysis of Stress
3 Analysis of Strain
4 Plane Strain and Plane Stress Problems
5 Stress Invariants, Principle Stresses and Strains
6 Yield and Failure Criteria
7 Unsymmetric Bending of Beams
8 Shear Centre
9 Torsion of Noncircular Cross-Sections
10 Energy Methods
11 Energy Methods
12 Buckling of Columns
13 Plastic Behaviour of Structural Members
14 Plastic Behaviour of Structural Members
15 Final Exam Period
16 Final Exam Period

Sources

Other Sources 1. Ugural C. A. and Fenster S. K., Advanced Strength and applied Elasticity – 4th Edition, Prentice-Hall, 2003.
2. Budynas R. G., Advanced Strength and Applied Stress Analysis-2nd Edition, Mc Graw-Hill, 1999.
3. Beer P.F., Johnston E.R., DeWolf J. and Mazurek D., Mechanics of Materials, 4th Edition, McGraw-Hill, 2006.
4. Omurtag, M.H., Mukavemet I-II, Birsen Yayınevi, 2005.
5. İnan, M., Cisimlerin Mukavemeti, 8. Baskı, İTÜ Vakfı, 2001.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 20
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems
2 An ability to define and analyze issues related with manufacturing technologies
3 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment
4 An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints
5 An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications
6 Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering
7 An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly
8 An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually
9 An ability to attain efficient communication skills in Turkish and English both verbally and orally
10 An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology
11 An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering
12 An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development
13 An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 8 8
Report
Homework Assignments 4 4 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 11 11
Total Workload 125