ECTS - Boundary Element Method Programming
Boundary Element Method Programming (MDES651) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Boundary Element Method Programming | MDES651 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The main objective of this course is to acquaint the students with the basic concepts about the programming principles of boundary element method. The students will learn the procedures in developing a boundary element formulation for specific engineering problems and with the obtain formulation; they will be able to program specific problems to solve given tasks. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Vector calculus; boundary value problems in mechanics; general outline of boundary element formulation; direct and indirect formulations; discretization-elements and integration; assembly and solution techniques; advanced techniques-dual reciprocity and multiple reciprocity, substructuring and boundary element-finite element coupling; parallel prog |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Mathematical introduction: Vector calculus and boundary value problems, numerical solution techniques of BVPs | Related pages of the textbook and other courses |
2 | Boundary element method formulations | Related pages of the textbook and other courses |
3 | Boundary element formulations – direct method | Related pages of the textbook and other courses |
4 | Boundary element formulations – indirect method | Related pages of the textbook and other courses |
5 | Several application problems: Laplace equation, linear Poisson equations, linear theory of elasticity | Related pages of the textbook and other courses |
6 | Discretization of the domain – element types | Related pages of the textbook and other courses |
7 | Discretization of the domain – integrations over elements | Related pages of the textbook and other courses |
8 | Near singular, weakly singular integrals and integrals containing higher singularities | Related pages of the textbook and other courses |
9 | Numerical evaluation of Cauchy principal value integrals and Hadamard Finite Part integrals | Related pages of the textbook and other courses |
10 | Assembly and solution | Related pages of the textbook and other courses |
11 | Pre- and post-processing of data | Related pages of the textbook and other courses |
12 | Alternative formulations; dual reciprocity, multiple reciprocity and domain decomposition techniques | Related pages of the textbook and other courses |
13 | Finite element – boundary element coupling | Related pages of the textbook and other courses |
14 | Parallel programming issues in boundary element method | Related pages of the textbook and other courses |
15 | Overall review | - |
16 | Final exam | - |
Sources
Course Book | 1. [1] Beer, G., Programming the boundary element method, John Wiley &Sons, (2001). |
---|---|
Other Sources | 2. [2] Gao, X. W., Davies, T. G., Boundary element programming in mechanics, Cambridge University Press, (2002). |
3. [3] Brebbia C. A., Domingues, J., Boundary elements, McGraw-Hill, (1992).. | |
4. [4] Wrobel, L.C., The boundary element method v.1 Applications in thermo-fluids and acoustics, John Wiley and Sons Inc., (2002) | |
5. [5] Aliabadi, M.H., The boundary element method v.2 Applications in solids and structures, John Wiley and Sons Inc., (2002) |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 5 | 40 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 13 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. | |||||
2 | Develops the ability to analyze and define issues related to manufacturing technologies. | |||||
3 | Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments. | |||||
4 | Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability. | |||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
6 | Performs research in manufacturing engineering and implements projects involving innovative manufacturing technologies. | |||||
7 | Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions. | |||||
8 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. | X | ||||
9 | Communicates effectively in both spoken and written Turkish and English. | |||||
10 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
11 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering. | |||||
12 | Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
13 | Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 5 | 25 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 131 |