Tool and Die Design (MFGE403) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Tool and Die Design MFGE403 Area Elective 2 0 2 3 5
Pre-requisite Course(s)
ME210
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Hakan Kalkan
Course Assistants
Course Objectives This course aims to introduce design and manufacturing of jigs and fixtures which are used in manufacturing processes.
Course Learning Outcomes The students who succeeded in this course;
  • The student will know tool materials and manufacturing methods of tools.
  • Ability to dimensioning and tolerancing techniques for the design of tools.
  • The student will be able to design jigs and fixtures.
  • The student will be able to design dies for sheet metal works.
  • The student will know the importance of Finite Element Analysis for the design of tools.
Course Content Introduction, definitions of jigs and fixtures, types of fixtures, design and manufacturing of jigs and fixtures, FE analysis of loading and stress analysis of jigs during processes.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Lecture Notes 1 on moodle website
2 Tooling Materials Lecture Notes 2 on moodle website
3 Dimensioning Lecture Notes 3 on moodle website
4 Sectioning Lecture Notes 4 on moodle website
5 Tolerancing Lecture Notes 5 on moodle website
6 Assembly Drawings Lecture Notes 6 on moodle website
7 Threads & Fasteners Lecture Notes 7 on moodle website
8 Tool Drawings Lecture Notes 8 on moodle website
9 Jigs & Fixtures Lecture Notes 9 on moodle website
10 Sheet Metal Bending Tools Lecture Notes 10 on moodle website
11 Sheet Metal Drawing Tools Lecture Notes 11 on moodle website
12 Sheet Metal Stretching Tools Lecture Notes 12 on moodle website
13 FE modelling of tools and dies Lecture Notes 13 on moodle website
14 Student Project Presentations Lecture Notes 14 on moodle website
15 Final Exam Lecture Notes on moodle website
16 Final Exam Lecture Notes on moodle website

Sources

Course Book 1. Fundamentals of Tool Design Author - John G. Nee, Society of Manufacturing Engineers.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 5 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. X
2 Develops the ability to analyze and define issues related to manufacturing technologies. X
3 Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments.
4 Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability.
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications.
6 Performs research in manufacturing engineering and implements projects involving innovative manufacturing technologies.
7 Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions.
8 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. X
9 Communicates effectively in both spoken and written Turkish and English.
10 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself.
11 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering.
12 Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
13 Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 2 32
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 126