Metal Forming (ME411) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Metal Forming ME411 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
ME210
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan KALKAN
Course Assistants
Course Objectives Course Objectives: In Metal Forming, students are acquainted with the basic knowledge on fundamental metal forming processes. The objective of this course is to teach metal forming theory and technology, limits of the processes, tool design and machinery selection.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be equipped with basic knowledge on metal forming processes.
  • Students will be able to approach metal forming processes both analytically and numerically.
  • Students will be able to design metal forming processes.
  • Students will learn how to put metal forming processes in a project form.
  • Students will learn to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws.
Course Content Plasticity theory and metal forming, metalurgical considerations; cold, warm and hot forming; extrusion, forging, wire drawing and deep drawing.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Metal Forming Operations Chapter 1
2 Stress and strain Chapter 2
3 General Metallurgical Considerations Chapter 3
4 Yielding, Yield Criteria and Hardening Chapter 4
5 Analysis Methods Chapter 5
6 Analysis Methods : Upper Bound Methods Chapter 6
7 Analysis Methods : Numerical Methods Chapter 7
8 Deformation field geometry: Friction, redundant deformation, internal damage, residual stresses Chapter 8
9 Surface processes Chapter 9
10 Rolling and ring rolling Chapter 10
11 Forging Chapter 11
12 Forging - Extrusion Chapter 12
13 Extrusion – Wire Drawing Chapter 13
14 Sheet metal processes Chapter 14
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. 1. Hosford, W. F., Caddell, R. M., “Metal Forming Mechanics and Metallurgy”, Prentice-Hall, 1993.
Other Sources 2. Tschaetsch, H., “Metal Forming Practice”, Springer 2006.
3. Avitzur, B., “Metal Forming: Processes and Analysis”, McGraw-Hill, 1968.
4. Lange, K. (Editor): Handbook of Metal Forming, McGraw-Hill, 1985.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. X
2 Develops the ability to analyze and define issues related to manufacturing technologies. X
3 Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments. X
4 Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability. X
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications. X
6 Performs research in manufacturing engineering and implements projects involving innovative manufacturing technologies. X
7 Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions. X
8 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. X
9 Communicates effectively in both spoken and written Turkish and English. X
10 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. X
11 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering. X
12 Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. X
13 Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 16 1 16
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 136