ECTS - Internal Combustion Engine Design
Internal Combustion Engine Design (AE419) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Internal Combustion Engine Design | AE419 | Area Elective | 2 | 2 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(AE302 veya AE312) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Problem Solving, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | To familiarize students with basic concepts of engine design based on thermodynamics calculations, engine configurations, engine materials, and the design of engine main components such as cylinder block, cylinder head, crankshaft, piston, etc. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to basic concepts of engine design; critical index; indicated and effective power, pressure, torque; crank-connecting rod mechanism. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Internal Combustion Engine Review | ICE Course Textbook and Lecture Notes |
2 | Internal Combustion Engine Review | ICE Course Textbook and Lecture Notes |
3 | Engine Design Process | k. Hoag, Chp. 4 |
4 | Fixing Displacement | k. Hoag, Chp. 5 |
5 | Engine Configuration and Balancing; (Teaching of Analysis Software) | k. Hoag, Chp. 6 |
6 | Engine Configuration and Balancing; (Teaching of Analysis Software) | k. Hoag, Chp. 6 |
7 | Engine Material; (Teaching of Analysis Software) | k. Hoag, Chp. 7 |
8 | Cylinder Block Layout; (Teaching of Analysis Software) | k. Hoag, Chp. 8 |
9 | Cylinder Head Layout; (Teaching of Analysis Software) | k. Hoag, Chp. 9 |
10 | Midterm Exam; Term Project Assignment | |
11 | Engine Design Project | |
12 | Engine Design Project | |
13 | Engine Design Project | |
14 | Term Project Presentation | |
15 | Final Exam |
Sources
Course Book | 1. Vehicular Engine Design, Kevin Hoag, Brian Dondlinger, Springer, 2016 |
---|---|
2. Internal Combustion Engine Design, John Manning, Ricardo UK Ltd, 2012 | |
3. Internal Combustion Engine Design, H. Sezgen, METU, 1975 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 9 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | 1 | 10 |
Project | 1 | 35 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 25 |
Final Exam/Final Jury | 1 | 25 |
Toplam | 13 | 100 |
Percentage of Semester Work | 75 |
---|---|
Percentage of Final Work | 25 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. | |||||
2 | Develops the ability to analyze and define issues related to manufacturing technologies. | |||||
3 | Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments. | |||||
4 | Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability. | |||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
6 | Performs research in manufacturing engineering and implements projects involving innovative manufacturing technologies. | |||||
7 | Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions. | |||||
8 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. | X | ||||
9 | Communicates effectively in both spoken and written Turkish and English. | |||||
10 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
11 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering. | |||||
12 | Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
13 | Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 9 | 2 | 18 |
Laboratory | |||
Application | 5 | 2 | 10 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 9 | 2 | 18 |
Presentation/Seminar Prepration | 1 | 10 | 10 |
Project | 1 | 40 | 40 |
Report | |||
Homework Assignments | 4 | 2 | 8 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 124 |