Surfaces and Interfaces (MFGE561) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Surfaces and Interfaces MFGE561 Elective Courses 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Cemal Merih Şengönül
Course Assistants
Course Objectives This course aims to acquaint the students with surface, near surface and interface phenomenon since many everyday situations concerning manufacturing engineering are very much dependent on interfacial processes.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of interfaces, its thermodynamics and the forces involved in their formation.
  • Students will get acquainted with solid surface energies, adsorption isotherms, liquid solid interfaces, wetting
  • Students will attain knowledge of surface roughness, and cleaning processes.
  • Students will cultivate understanding of surface wear and friction.
  • Students will learn plating, vapor coating as well as organic coating processes.
Course Content Interfacial forces, thermodynamics of interface, study of solid surfaces, interfaces between liquid and solid, surface cleaning methods, surface wear, plating and coating methods, marine biofouling, advances in anti-fouling marine and biomaterial surfaces, smart surfaces.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Interfacial Forces
2 Thermodynamic description of an Interface
3 The description of solid surfaces, surface free energy, surface tension, surface imperfections, surface roughness
4 The description of solid surfaces, surface free energy, surface tension, surface imperfections, surface roughness
5 Interface between a liquid and a solid, wetting and capillarity
6 Industrial surface cleaning processes
7 Surface wear, friction and characterization
8 Surface wear, friction and characterization
9 Plating and related processes
10 Vapor deposition processes
11 Vapor deposition processes
12 Organic coatings, adsorption and surface active species
13 Marine and biomaterial anti-fouling coatings, smart (functional) surfaces
14 Marine and biomaterial anti-fouling coatings, smart (functional) surfaces
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Surface Coatings for protection against wear, B. G. Mellor, Woodhead Publishing limited, 2006
2. Chemisty of Interfaces, M. J. Jaycock, G.D. Parfitt, Ellis Horwood Limited, 1981
3. Physics and Chemistry of Interfaces, Hans-Jürgen Butt, Karlheinz Graf, Michael Kappl, Wiley-VCH, 2006
Other Sources 4. Principles of Modern Manufacturing, Mikell P. Groover, John Wiley and Sons, 2011
5. Advances in marine anti-fouling coatings and technologies, Claire Hellio, Diego Yebra, Woodhead Publishing, 2009

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 30
Toplam 4 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems . X
2 An ability to define and analyze issues related with manufacturing technologies. X
3 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment. X
4 An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints. X
5 An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications. X
6 Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering. X
7 An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly. X
8 An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually. X
9 An ability to attain efficient communication skills in Turkish and English both verbally and orally. X
10 An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology. X
11 An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering. X
12 An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development. X
13 An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project
Report
Homework Assignments 1 40 40
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 167