ECTS - Numerical Linear Algebra
Numerical Linear Algebra (MDES621) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Numerical Linear Algebra | MDES621 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | This course is designed to give engineering students in graduate level the expertise necessary to understand and use computational methods for the approximate/numerical solution of linear algebra problems that arise in many different fields of science like electrical networks, solid mechanics, signal analysis and optimisation. The emphasis is on methods for linear algebra problems such as solutions of linear systems, least squares problems and eigenvalue-eigenvector problems, the effect of roundoff on algorithms and the citeria for choosing the best algorithm for the mathematical structure of the problem under consideration. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Floating point computations, vector and matrix norms, direct methods for the solution of linear systems, least squares problems, eigenvalue problems, singular value decomposition, iterative methods for linear systems. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to numerical computations. Vector and matrix norms | Read related sections in references |
2 | Condition numbers and conditioning, Stability, Propogation of roundoff errors | Read related sections in references |
3 | Direct methods for linear systems, Gaussian elimination, Pivoting, Stability. LU and Cholesky decompositions | Read related sections in references |
4 | LU and Cholesky decompositions (cont.) Operation counts, Error analysis, Perturbation theory, Special linear systems | Read related sections in references |
5 | Least Squares. Orthogonal matrices, Normal equations, QR factorization | Read related sections in references |
6 | Gram-Schmidt orthogonalization, Householder triangularization, Least Squares problems | Read related sections in references |
7 | Eigenproblem. Eigenvalues and eigenvectors, Gersgorin’s circle theorem, Iterative methods for eigenvalue problems | Read related sections in references |
8 | Power, Inverse Power and Shifted Power methods, Rayleigh quotients, Similarity transformations, Reduction to Hessenberg and tridiagonal forms | Read related sections in references |
9 | QR algorithm for eigenvalues and eigenvectors, Other eigenvalue algorithms. Singular Value Decomposition | Read related sections in references |
10 | SVD(cont.) and connection with Lesat Squares problem, Computing the SVD using the QR algorithm | Read related sections in references |
11 | Iterative Methods for Linear Systems. Basic iterative methods, Jacobi, and Gauss-Seidel methods | Read related sections in references |
12 | Richardson and SOR methods, Convergence analysis of the iterative methods | Read related sections in references |
13 | Krylov subspace Methods, Preconditioning and preconditioners | Read related sections in references |
14 | General Review | - |
15 | General Review | - |
16 | Final exam | - |
Sources
Course Book | 1. L.N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, 1997. |
---|---|
2. J.W.Demmel, Applied Numerical Linear Algebra, SIAM, 1997 | |
Other Sources | 3. G.H. Golub and C.F. van Loan. Matrix Computations, John Hopkin’s University Press, 3rd edition, 1996. |
4. A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, 1997. | |
5. C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000. | |
6. O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1996. | |
7. D.S. Watkins, Fundamentals on Matrix Computations, John Wiley and Sons, 1991. | |
8. K.E.Atkinson, An Introduction to Numericall Analysis, John Wiley and Sons, 1999. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 10 |
Homework Assignments | 7 | 9 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 46 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 15 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. | |||||
2 | Develops the ability to analyze and define issues related to manufacturing technologies. | |||||
3 | Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments. | |||||
4 | Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability. | |||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | |||||
6 | Conducts scientific research in the field of manufacturing engineering and/or plans and carries out a project involving innovative manufacturing technologies. | |||||
7 | Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions. | |||||
8 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. | X | ||||
9 | Communicates effectively in both spoken and written Turkish and English. | |||||
10 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
11 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering. | |||||
12 | Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
13 | Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 7 | 3 | 21 |
Quizzes/Studio Critics | 5 | 1 | 5 |
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 132 |