ECTS - Theory of Plasticity
Theory of Plasticity (ME667) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Theory of Plasticity | ME667 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | This course aims at a better understanding and formulation of plastic deformation of metals. It also discusses the role of microstructure and thermodynamics in plastic deformation. Different rules and models are discussed in details together with their mathematical representation including Maximum dissipation and normality rule, hardening rules, Non-associated flow rules. Slip line theory is discussed. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Vector and tensor calculus; general concepts about mechanics of materials - stress and strain concept; continuum deformation: displacement, strain and compatibility conditions; mechanics of continuous bodies: stress and stress equation of motion; elastic constitutive relations; inelastic constitutive relations; yield criteria, flow rules and hardening. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introductory Concepts in Plasticity | |
2 | On the role of microstructure and thermodynamics in plastic deformation | |
3 | Constitutive responses: elastic, viscoelastic, plastic, viscoplastic, anisotropy, etc. | |
4 | Rate dependent and rate independent plasticity | |
5 | Plastic strain, incremental strain, and hardening variables | |
6 | Yield criteria | |
7 | Maximum dissipation and normality rule (Associated flow rules) | |
8 | Hardening rules (isotropic and kinematic) | |
9 | Non-associated flow rules | |
10 | Uniqueness theorems and variational principles in plasticity | |
11 | Basic equations of plane strain and plane stress Slip lines and their properties | |
12 | Solution to several problems (such as indentation, necking, drawing, etc) | |
13 | The concept of plastic stability | |
14 | Dynamic plasticity |
Sources
Course Book | 1. Chakrabarty, Jagabanduhu. Theory of plasticity. Butterworth-Heinemann, 2012 |
---|---|
Other Sources | 2. Hill, Rodney. The mathematical theory of plasticity. Vol. 11. Oxford university press, 1998. Batdorf, So Bo, and Bernard Budiansky. "A mathematical theory of plasticity based on the concept of slip." (1949). |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 4 | 10 |
Homework Assignments | 4 | 20 |
Presentation | - | - |
Project | 1 | 20 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 11 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to apply advanced computational and/or manufacturing technology knowledge to solve manufacturing engineering problems. | X | ||||
2 | Develops the ability to analyze and define issues related to manufacturing technologies. | X | ||||
3 | Develops an approach for solving encountered engineering problems, and designs and conducts models and experiments. | X | ||||
4 | Designs and manufactures a comprehensive manufacturing system —including method, product, or device development— based on the creative application of fundamental engineering principles, under constraints of economic viability, environmental sustainability, and manufacturability. | X | ||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | X | ||||
6 | Conducts scientific research in the field of manufacturing engineering and/or plans and carries out a project involving innovative manufacturing technologies. | X | ||||
7 | Effectively uses information technologies to collect and analyze data, think critically, interpret results, and make sound decisions. | X | ||||
8 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and organizational skills required. | X | ||||
9 | Communicates effectively in both spoken and written Turkish and English. | X | ||||
10 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | X | ||||
11 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, occupational safety, and social issues in the field of Manufacturing Engineering. | X | ||||
12 | Effectively utilizes resources (personnel, equipment, costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | X | ||||
13 | Gathers knowledge about the health, environmental, social, and legal impacts of engineering practices at both global and local levels when making decisions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 4 | 4 | 16 |
Quizzes/Studio Critics | 3 | 3 | 9 |
Prepration of Midterm Exams/Midterm Jury | 1 | 20 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 107 |