Calculus II (MATH152) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Calculus II MATH152 4 2 0 5 7
Pre-requisite Course(s)
MATH151 Calculus I
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course is designed as a continuation of MATH151 Calculus I and aims to give the students the computational skills in series, analytic geometry and multi-variable differential and integral calculus to handle engineering problems.
Course Learning Outcomes The students who succeeded in this course;
  • understand and use sequences, infinite series, power series of functions, Taylor and Maclaurin series,
  • use analytic geometry through vectors and interpret lines, planes and surfaces in 3-dimensional space,
  • understand and use the functions of several variables, partial derivatives, directional derivatives, gradient vectors and tangent planes
  • find local and absolute extrema of multivariable functions, use Lagrange Multipliers and solve optimization problems,
  • understand and use double and triple integrals in different coordinate systems
Course Content Infinite series, vectors in the plane and polar coordinates, vectors and motions in space, multivariable functions and their derivatives, multiple integrals: double integrals, areas, double integrals in polar coordinates, triple integrals in rectangular, cylindrical and spherical coordinates, line integrals, Independence of path,Green's theorem.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 9.1. Sequences and Convergence, 9.2. Infinite Series, pp:495-409
2 9.3. Convergence Tests for Positive Series (The Integral Test, Comparison Tests, The Ratio and Root Tests), 9.4. Absolute and Conditional Convergence, pp:510-526
3 9.5. Power Series, 9.6. Taylor and Maclaurin Series (Convergence of Taylor Series; Error Estimates), pp:526-545
4 9.7. Applications of Taylor and Maclaurin Series, 10.1. Analytic Geometry in Three Dimensions, pp:546-549 pp:562-568
5 10.2. Vectors, 10.3. The Cross Product in 3-Space, pp:568-585
6 10.4. Planes and Lines, 10.5. Quadric Surfaces, pp:585-596
7 Midterm,
8 12.1. Functions of Several Variables, 12.2. Limits and Continuity, pp:669-681
9 12.3. Partial Derivatives, 12.4. Higher Order Derivatives, 12.5. The Chain Rule, pp:681-703
10 12.6. Linear Approximations, Differentiability, and Differentials, 12.7. Gradient and Directional Derivatives, 12.8. Implicit Functions, pp:703-705 pp:706-707 pp:714-726
11 13.1. Extreme Values, 13.2. Extreme Values of Functions Defined on Restricted Domains, pp:743-754
12 13.3. Lagrange Multipliers, 14.1. Double Integrals, pp:756-760 pp:790-796
13 14.2. Iteration of Double Integrals in Cartesian Coordinates, 14.4. Double Integrals in Polar Coordinates, pp:796-802 pp:808-812
14 14.5. Triple Integrals, 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), pp:818-830
15 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), pp:824-830
16 Final Exam


Course Book 1. Calculus: A complete Course, R. A. Adams, C. Essex, 7th Edition; Pearson Addison Wesley
Other Sources 2. Thomas’ Calculus Early Transcendentals, 11th Edition.( Revised by M. D. Weir, J.Hass and F. R. Giardano; Pearson , Addison Wesley)
3. Calculus: A new horizon, Anton Howard, 6th Edition; John Wiley & Sons
4. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall
5. Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems.
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 18 18
Total Workload 176