Fuel Cell Technologies (ENE412) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fuel Cell Technologies ENE412 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Yılser DEVRİM
  • Research Assistant Gizem Nur BULANIK DURMUŞ
Course Assistants
Course Objectives To introduce the fuel cell technolgy to the students,to give an oportunity to the students for the applications of the basic concepts gained in chemistry and thermodynamic courses by means of the processes take place in the fuel cell.
Course Learning Outcomes The students who succeeded in this course;
  • Introduction to the basic concepts and fuel cell technology to give the environmental conciousness, to gain research abilities.
Course Content Introduction: fuel cell operating principles,history,types,components and systems;fuel cell thermodynamics and electrochemistry:Nernst equation,Tafel equation,cell voltage,fuel cell efficiency and losses for operational fuel cell voltages;proton exchange membrane fuel cells:components and system, construction and performance, critical issues and recent developments;fuel cell stack design and calculations; hydrogen production, storage, safety and infrastructure; balance of fuel cell power plant

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1
2 Fuel Cell Thermodynamics Chapter 2
3 Fuel Cell Thermodynamics Chapter 2
4 Fuel Cell Reaction Kinetics Chapter 3
5 Fuel Cell Charge Transport Chapter 4
6 Fuel Cell Mass Transport Chapter 5
7 Fuel Cell Modeling Chapter 6
8 Midterm Exam
9 Fuel Cell Modeling Chapter 6
10 Fuel Cell Characterization Chapter 7
11 Overview of Fuel Cell Types Chapter 8
12 Overview of Fuel Cell Systems Chapter 9
13 Fuel Cell Integration and Subsystem Design Chapter 10
14 Fuel Cell Integration and Subsystem Design Chapter 10
15 Environmental Impact of Fuel Cells Chapter 11
16 Final Exam

Sources

Course Book 1. Fuel Cell Fundamentals by Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz, 2006, Wiley
Other Sources 2. Fuel Cell Principles, Components, and Assemblies by R. Datta, May 2009, Wiley
3. Fuel Cells, Engines and Hydrogen: An Exergy Approach by Frederick J. Barclay, June 2006,Wiley
4. Hydrogen and Fuel Cells: Emerging Technologies and Applications, Brent Sorensen, Elsevier Science and Technology Books, 2005.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 9 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems. X
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125