Vehicle Aerodynamics (AE422) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Vehicle Aerodynamics AE422 3 1 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. RAHIM JAFARI
Course Assistants
Course Objectives To familiarize students with basic concepts of the flow phenomenon related to vehicles, the coupling between the fundamental theories of fluid dynamics and vehicle aerodynamics, evaluation of the aerodynamic properties of a vehicle by conducting wind tunnel tests as well as simulating numerical methods.
Course Learning Outcomes The students who succeeded in this course;
  • After successful completion of this course the student will be able to: 1. identify the theories of fluid flow related to vehicle aerodynamics [12a (i), 13, 14], 2. evaluate the aerodynamic properties of a vehicle by wind tunnel [3, 5], and 3. evaluate the aerodynamic properties of a vehicle by numerical simulation [1,2].
Course Content Fundamentals of fluid mechanics; Navier-Stokes equations; analysis of aerodynamic drag, drag force calculation, and computational and experimental techniques to obtain drag coefficient.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 week 1 Fundamental fluid dynamics week 2 Fundamental fluid dynamics week 3 Resistance to vehicle motion and bluff body aerodynamics week 4 Drag coefficient of car and aerodynamics of passenger vehicles week 5 Aerodynamics performance - Fuel consumption week 6 Strategies for aerodynamic development week 7 Midterm 1 week 8 Automotive wind tunnel week 9 Wind tunnel tests week 10 Computational fluid dynamics week 11 Simulation of the flow around Ahmet body week 12 Simulation of the flow around Ahmet body week 13 Simulation of the flow around Ahmet body week 14 Simulation of the flow around Ahmet body week 15 Final project AE 307

Sources

Course Book 1. Automotive Aerodynamics, Joseph Kats, Wiley.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 15
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury - -
Toplam 6 105
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. X
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. X
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. X
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. X
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. X
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems. X
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field. X
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 1 3 3
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 4 56
Presentation/Seminar Prepration 1 7 7
Project 1 15 15
Report
Homework Assignments 2 4 8
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 3 3
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 137