ECTS - Introduction to Optimization
Introduction to Optimization (MATH490) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Optimization | MATH490 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To give a basic knowledge of optimization in mathematics, provide an introduction to the applications, theory, and algorithms of linear and nonlinear optimization |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fundamentals of optimization, representation of linear constraints, linear programming, Simplex method, duality and sensitivity, basics of unconstrained optimization, optimality conditions for constrained problems. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | I. Basics Chapter 1. Optimization Models 1.1. Introduction 1.3. Linear Equations 1.4. Linear Optimization | Related sections in Ref. [1] |
2 | 1.5. Least-Squares Data Fitting 1.6. Nonlinear Optimization 1.7. Optimization Applications | Related sections in Ref. [1] |
3 | Chapter 2. Fundamentals of Optimization 2.1. Introduction 2.2. Feasibility and Optimality 2.3. Convexity 2.4. The General Optimization Algorithm | Related sections in Ref. [1] |
4 | 2.5. Rates of Convergence 2.6. Taylor Series 2.7. Newton’s Method for Nonlinear Equations and Termination | Related sections in Ref. [1] |
5 | Chapter 3. Representation of Linear Constraints 3.1. Basic Concepts 3.2. Null and Range Spaces | Related sections in Ref. [1] |
6 | II Linear Programming Chapter 4. Geometry of Linear Programming 4.1. Introduction 4.2. Standard Form 4.3. Basic Solutions and Extreme Points | Related sections in Ref. [1] |
7 | Chapter 5. The Simplex Method 5.1. Introduction 5.2. The Simplex Method | Related sections in Ref. [1] |
8 | Chapter 6. Duality and Sensitivity 6.1. The Dual Problem 6.2. Duality Theory | Related sections in Ref. [1] |
9 | III Unconstrained Optimization Chapter 11. Basics of Unconstrained Optimization 11.1. Introduction 11.2. Optimality Conditions 11.3. Newton’s Method for Minimization | Related sections in Ref. [1] |
10 | 11.4. Guaranteeing Descent 11.5. Guaranteeing Convergence: Line Search Methods | Related sections in Ref. [1] |
11 | IV Nonlinear Optimization Chapter 14. Optimality Conditions for Constrained Problems 14.1. Introduction 14.2. Optimality Conditions for Linear Equality Constraints | Related sections in Ref. [1] |
12 | 14.3. The Lagrange Multipliers and the Lagrangian Function 14.4. Optimality Conditions for Linear Inequality Constraints | Related sections in Ref. [1] |
13 | 14.5. Optimality Conditions for Nonlinear Constraints | Related sections in Ref. [1] |
14 | Review | |
15 | Review | |
16 | Final |
Sources
Course Book | 1. Igor Griva, Stephen G. Nash, Ariela Sofer, Linear and Nonlinear Optimization Second Edition, SIAM, 2009 |
---|---|
2. Edwin K.P. Chong, Stanislaw H. Zak, An Introduction to Optimization, Third Edition, John Wiley and Sons, 2008 | |
3. Amir Beck, Introduction to Nonlinear Optimization: Theory, Algorithms and Applications with MATLAB, SIAM, 2014. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 7 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; gains the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. | |||||
2 | Gains the ability to define, formulate, and solve complex engineering problems; gains the ability to select and apply proper analysis and modeling methods for this purpose. | |||||
3 | Gains the ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; gains the ability to apply modern design methods for this purpose. | |||||
4 | Gains the ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; gains the ability to use information technologies effectively. | |||||
5 | Gains the ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. | |||||
6 | Gains the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; gains the ability to work individually. | |||||
7 | (a) Gains effective oral and written communication skills; gains the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. (b) Gains the knowledge of, at least, one foreign language; gains the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly in this foreign language. | |||||
8 | Gains awareness of the need for lifelong learning; gains the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. | |||||
9 | Gains knowledge about acting in conformity with the ethical principles, professional and ethical responsibility and knowledge of the standards employed in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; knowledge of sustainable development. | |||||
11 | Gains knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; gains awareness of the possible legal consequences of engineering practices. | |||||
12 | (a) Gains knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) Gains the ability to merge and apply these knowledge in solving multi-disciplinary automotive problems. | |||||
13 | Gains the ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field. | |||||
14 | Gains he ability to work in the field of vehicle design and manufacturing. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 4 | 2 | 8 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 16 | 32 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 150 |