Software Architecture (SE558) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Software Architecture SE558 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to provide an overview of software design architecture, application, languages for software and critical systems.
Course Learning Outcomes The students who succeeded in this course;
  • Explain basics of architecture, application, and languages for software and critical systems
  • Apply different software techniques and documentation
  • Analyse various real life software architecture construction, success and pitfalls
Course Content Introduction to software architecture; architecture business cycle; creating an architecture; introducing a case study; understanding and achieving quality; design, document and reconstruct software architecture; methods for architecture evaluation; quantitative approach to architecture design decision making; software product lines; middleware, mo

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Software Quality Attributes Chapter 3
2 Middleware Architectures and Technology Chapter 4
3 Software Product Lines Chapter 9
4 Aspect Oriented Architectures Chapter 10
5 Model-Driven Architecture Chapter 11
6 Service Oriented Architecture & Technologies Chapter 12
7 Semantics Web Chapter 13
8 Software Agents Chapter 43
9 Applied Architectures and Styles Software Architecture Foundations, Theory, and Practice by Richard N. Taylor, Nenad Medvidovic, Eric M. Dashofy -Chapter 11
10 Design for Non-Functional Properties Chapter 12
11 Security and Trust Chapter 13
12 Architectural Adaptation Chapter 14
13 Domain-Specific Software Engineering Chapter 15
14 Standards Chapter 16
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Essential Software Architecture by Ian Gorton, Springer, 2006
Other Sources 2. Software Architecture in Practice, Second Edition, by Bass, Clements and Kazman, Addison-Wesley Publishers, ISBN: 0-321-15495-9, 2007
3. Quality Software Project Management by Robert T. Futrell, Donald F. Shafer, and Linda I. Shafer, Prentice Hall, 2002
4. Evaluating Software Architecture- Methods and Case Studies, by Paul Clements, Rick Kazman, Mark Klein, ISBN: 020170482X, Addison Wesley, 2007.
5. Software System Architecture by Nick Rozanski and Eoin Woods, ISBN 0-321-11229-6, Addison Wesley, 2007
6. Software Product Line in Action Frank Van der Linden, Klaus Schmid, Eelco Rommes, ISBN 978-3-540-71436-1 Springer Berlin Heidelberg New York, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 15
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Comprehends the most advanced technology and literature in the field of software engineering research. X
2 Gains the ability to conduct world-class research in software engineering and publish scholarly articles in top conferences and journals in the area. X
3 Conducts quantitative and qualitative studies in software engineering.
4 Develops and applies software engineering approaches to acquire the necessary skills to bridge the gap between academia and industry in the field of software engineering and to solve real-world problems.
5 Gains the ability to access the necessary information to follow current developments in science and technology, and to conduct scientific research or develop projects in the field of software engineering.
6 Gains awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of software engineering.
7 Acquires project and risk management skills; gains awareness of the importance of entrepreneurship, innovation, and sustainable development; adapts international excellence standards for software engineering practices and methodologies.
8 Gains awareness of the universal, environmental, social, and legal consequences of software engineering practices when making decisions.
9 Develops, adopts, and supports the sustainable use of excellence standards for software engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 2 15 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 228