# Introduction to Computational Fluid Dynamics (ME437) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Computational Fluid Dynamics ME437 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English N/A Natural & Applied Sciences Master's Degree Face To Face Lecture, Demonstration, Experiment. To introduce Computational Fluid Dynamics (CFD) as a tool for solution of fluid dynamics problems. To familiarize students with different methods used in solving computational fluid dynamics problems such as finite differences, finite elements and finite volumes. To teach concepts such as boundary and initial conditions, numerical accuracy, consistency and stability. To enable students to conduct an independent project on a related topic. The students who succeeded in this course; 1. Understanding of the importance of the computational fluid dynamics (CFD) method in engineering problem solving and new product design. 2. Formation of basic CFD principles. 3. Evaluation of CFD application areas. 4. Knowing the position of commercial CFD programs. 5. Understanding of limitations in CFD applications. Hesaplamalı akışkanlar mekaniğine giriş, akışkanlar mekaniğinin temel denklemleri, temel hesaplamalı teknikler, sayısal şemaların özellikleri, sonlu farklar yöntemi, sonlu elemanlar yöntemi, denklem sistemlerinin çözüm yöntemleri, ağ (mesh) oluşturma.

### Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 Commercial CFD Codes
3 1-Dimensional Heat Conduction, Solution File and Solution Procedure.
4 Discretization Procedure With The Finite Volume Method: 1-Dimensional Heat Conduction, Boundary Conditions And Source Term Expressions.
5 Boundary Source Linearization, General Rules For The Discretization Of Equations.
6 Numerical Exact Solution Of The 1-Dimensional Heat Conduction Problem: Formulation of Governing Equations, Formulation Of The Algebraic Equations Usin
7 Interior Cells, Boundary Cells, Numeric Solution Using Algebraic Equations.
8 Laminar Flow İn A Sudden Expansion Channel, Solution File And Solution Procedure.
9 Other Cfd Method Subjects: Variable Cell Distributions, Blocking İnside The Computational Domain.
10 Relaxation, Convergence And Restart, Control Of Accuracy And Validity Of Cfd Solutions.
11 Transient Natural Convection, Solution File And Solution Procedure.
12 Application
13 Application
14 Application

### Sources

Course Book 1. Versteeg, H. K. and Malalasekera, W., “An Introduction to Computational Fluid Dynamics”, Longman, 1995 2. Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, 1980.

### Evaluation System

Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 15
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 40
Toplam 9 100
Percentage of Semester Work 100 100

### Course Category

Core Courses X

### The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 5 3 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 20 20