Theory of Metal Cutting (MFGE541) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Metal Cutting MFGE541 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. S. Engin Kılıç
Course Assistants
Course Objectives The objective of this course is to introduce advanced topics in metal cutting theory. This approach will be employed to analyze mechanics of cutting, economy in cutting, alternative methods to cutting technology. Also, chip control and machine vibrations will be an within the scope. The course will also cover the computer aided manufacturing and design for machining.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have advanced knowledge on metal cutting operations.
  • Students will be able to design and analyze advanced processes in metal cutting technology.
  • Students will have advanced knowledge on metal cutting operations.
Course Content Introduction, machine tools and machining operations ?turning, drilling and milling, abrasive machining, mechanics of metal cutting; tool life and tool wear, economics of metal cutting operations, chip control, machine tool vibrations, grinding.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction; machine tools and machining operations
2 Introduction; machine tools and machining operations
3 Mechanics of metal cutting
4 Mechanics of metal cutting
5 Temperatures in metal cutting
6 Tool life and tool wear
7 Cutting fluids; surface integrity
8 Economics of Metal Cutting Operations
9 Geometry and materials of cutting tools
10 Chip Control
11 Machine tool vibrations
12 Grinding
13 Presentations and discussions on project reports
14 Presentations and discussions on project reports
15 Final Examination Period
16 Final Examination Period


Course Book 1. Boothroyd, G., Knight, W. A., Fundamentals of Machining and Machine Tools, 2nd Edition, Marcel Dekker, Inc., New York, 1985.
Other Sources 2. Altıntaş, Yusuf, “Manufacturing Automation Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design”, Cambridge University Press, 2000
3. Tlusty, George, “Manufacturing Processes and Equipment”, Prentice Hall, 1999

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 25
Toplam 6 100
Percentage of Semester Work 75
Percentage of Final Work 25
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration 1 8 8
Project 1 16 16
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 7 7
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 73