Advanced Heat Conduction (ME631) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Heat Conduction ME631 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to teach analytical solution methods for heat transfer problems involving heat conduction, the method of seperation of variables and integral methods, heat conduction equation in cartesian and cylindrical coordinates as well as in semi-infinite and infinite domains.
Course Learning Outcomes The students who succeeded in this course;
  • Understanding of the basic characteristics of Heat Transfer. Learning and applications of methods used to solve Heat Transfer problems.
Course Content Differential equation of heat conduction, boundary value problems, the method of separation of variables, heat conduction in semi-infinite and infinite domains, approximate analytical mehtods, numerical methods.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 General Heat Conduction Equation
3 One-Dimensional Steady State Heat Conduction
4 One-Dimensional Steady State Heat Conduction
5 Boundary value problems
6 Heat conduction in semi-infinite and infinite domains
7 Approximate analytical methods.
8 The method of separation of variables
9 Steady Two and Three Dimensional Heat Conduction: Solutions with Separation of Variables
10 Steady Two and Three Dimensional Heat Conduction: Solutions with Separation of Variables
11 Unsteady Heat Conduction: Solutions with Separation of Variables
12 Unsteady Heat Conduction: Solutions with Separation of Variables
13 Further Methods of Solutions
14 Further Methods of Solutions


Course Book 1. 1. Arpacı V.S., (1966), Conduction Heat Transfer, Addison-Wesley.
2. 2. Kakaç S., Yener Y., (1993), Heat Conduction, Philadelphia, Pa: Taylor and Francis.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 10 10
Homework Assignments 2 10 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 14 28
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 110