Language Processors (CMPE424) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Language Processors CMPE424 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to provide necessary skills in developing a language processor as applied to compiler generation.
Course Learning Outcomes The students who succeeded in this course;
  • Use syntactic analyzers in the context of compiler construction
  • Appraise higher level programming languages concepts
  • Design a scanner and a parser as a part of a compiler
Course Content Fundamental concepts of compilation and interpretation; single-pass and multiple-pass language translators; lexical analyzer; top-down parsing, and LL(1) grammars; recursive descent method; bottom-up parsing; shift reduce technique; operator precedence grammar, LR(0) and SLR(1) grammars; syntax directed translation; error processing and recovery; s

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Compiling Chapter 1 (main text)
2 A Simple One-Pass Compiler Chapter 2
3 Lexical Analysis Chapter 3
4 Syntax Analysis Chapter 4
5 Syntax Directed Translation Chapter 5
6 Syntax Directed Translation Chapter 5
7 Type Checking Chapter 6
8 Run-time Environments Chapter 7
9 Run-time Environments Chapter 7
10 Run-time Environments Chapter 7
11 Intermediate Code Generation Chapter 8
12 Code Generation Chapter 9
13 Code Generation Chapter 9
14 Code Optimization Chapter 10

Sources

Course Book 1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition), 2006, ISBN: 0321486811. (Dragon Book)
Other Sources 2. 1. Steven Muchnick, Advanced Compiler Design and Implementation, 1997, Morgan Kaufmann Publishers, ISBN:1-55860-320-4.
3. 2. Doug Brown, John Levine, Tony Mason, UNIX Programming Tools: Lex & Yacc, O’Reilly, 1992.
4. 3. Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen Langendoen VU University Amsterdam, Amsterdam, The Netherlands. John Wiley & Sons, Ltd., pp. 736 + xviii; ISBN 0471976970, 2000.
5. 4. http://dinosaur.compilertools.net/yacc/.
6. 5. Andrew W. Appel, Jens Palsberg, “Modern Compiler Implementation in Java (2nd edition)”, Cambridge Univ. Press, ISBN-13: 9780521820608, 2002.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 15
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 30
Toplam 5 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems. X
2 To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose.
4 To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively. X
5 Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering.
6 Can work effectively in disciplinary and multidisciplinary teams; can work individually.
7 a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language.
8 To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously.
9 a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications.
10 a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development.
11 a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 130