ECTS - Special Topics in Computer Networks

Special Topics in Computer Networks (CMPE435) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Special Topics in Computer Networks CMPE435 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
CMPE334
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to teach elaborate principles and implementation details of TCP/IP networks, with a focus on today’s Internet applications.
Course Learning Outcomes The students who succeeded in this course;
  • Discuss and interpret the basic concepts of data communication principles and TCP/IP protocol suit.
  • Describe detailed technical service configuration parameters and implementation details of well-known Internet applications.
  • Describe OSI layered architecture for computer networks. Identify the functions of TCP/IP and the matching with OSI layers
  • Recall principles of routing mechanisms in TCP/IP networks and routing protocols.
  • Describe the functionalities and usage of IPv6 addressing scheme.
  • Review security requirements of computer networks.
Course Content Elaborate concepts of TCP/IP computer networks; application details for well-known applications on the Internet. IPv6 addresses; routing principles and routing algorithms; ICMP communication; VPNs; wireless-networking; network security.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Brief history and introduction to computer Networks. What is the Internet? ISO layered structure for network services. Introduction + Chapter 1(main text)
2 Review of TCP/IP networks and basic functions on the different layers. Segment, datagram, frame structures. Lecture notes + Selected topics in Chapter 2-5
3 HTTP protocol overview and message format. Cookies, Proxies, cache-control, conditional GET, content encoding. Chapter 2.2.4-2.2.6
4 HTTP services for applications. HTTPS services. FTP overview. E-mail protocols, SMTP and POP3 overview. Mail message formats and MIME Chapter 2.3, 2.4.3-2.4.4
5 DNS architecture and protocol overview. Reverse DNS lookup and DNS poisoning. Characteristics of peer-to-peer applications. P2P file distribution. Distributed Hash Tables (DHT) Chapter 2.5-2.6
6 Overview of transport layer principles and services (UDP/TCP). Connectionless & Connection-oriented transports. Reliability in TCP. Chapter 3.1-3.4
7 TCP flow control, congestion control. ATM ABR congestion control. Chapter 3.5.4-3.7
8 Overview of datagram networks, routing and forwarding. Forwarding by IP addresses and IP address management, subnets and subnet masks. Routing algorithms, Link-state, Distance-Vector routing algorithms. Chapter 4.1-4.5
9 Hierarchical routing. Intra-AS routing: RIP, OSPF. Inter-AS routing: BGP. Broadcast & multicast routing. Chapter 4.5-4.7
10 IPv6 specifications, services, datagram format. IPv4 –IPv6 transition and compatibility. Chapter 4.4.4 + Lecture notes
11 ICMP specifications and implementations. VPN establishment and management. Chapter4.4.3-4.4.5+Lecture notes
12 Overview of link layer principles and the Ethernet protocol. ARP protocol , HUBs and switches. Error detection and correction techniques. VLAN establishment and management. Point-to-point link layer communication and frame structure. Link virtualization. Physical layer overview. Chapter 5.6.3-5.7
13 Overview of wireless network principles and standards (WiFi, Bluetooth, WiMAX). The IEEE 802.xx standards stack and different wireless services. Mobility in wireless networks and mobility management principles. Cellular internet access. Mobile IP. Chapter 6.4-6.8
14 Security risks in networks. Secure e-mail. SSL and transport layer security. IPsec and VPNs. Wireless security. Operational security firewalls and intrusion detection systems. Chapter 8

Sources

Course Book 1. Computer Networking: A Top-Down Approach Featuring the Internet, 5/E, James F. Kurose, Keith W. Ross, Addison-Wesley, 2010, ISBN: 978-0-13-136548-3.
Other Sources 2. Computer Networks 4/E, Andrew S. Tanenbaum, Pearson Education Inc., 2006
3. Introduction to Data Networks, Lawrence Harte, ALTHOS Publishing, 2005
4. Computer Networking First-Step, Wendell Odom, Cisco Press, 2004
5. Bilgisayar Ağları, Nazife Baykal, Sas Bilişim, 2005
6. TCP/IP Tutorial and Technical Overview, On-line book available at “http://www.redbooks.ibm.com/” Redbooks, published 19 December 2006, Last accessed May 14, 2009

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 3 20
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems. X
2 To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose.
4 To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively.
5 Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering.
6 Can work effectively in disciplinary and multidisciplinary teams; can work individually.
7 a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language.
8 To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously.
9 a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications.
10 a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development.
11 a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics 3 5 15
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125