ECTS - Introduction to Microprocessors and Microcontrollers

Introduction to Microprocessors and Microcontrollers (CMPE236) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Microprocessors and Microcontrollers CMPE236 Area Elective 3 2 0 4 8
Pre-requisite Course(s)
EE203
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce basic microcontroller architecture and operations, to teach how to program a microcontroller using both assembly language and C to implement a given design.
Course Learning Outcomes The students who succeeded in this course;
  • Demonstrate the transfer of information, from register to register to memory for each instruction
  • Describe the basis for interaction between the microcontroller and external hardware
  • Explain the operation of microcontroller hardware, and be able to write programs using timers and counters.
  • Define the operations performed by each assembly language instruction
  • Define the operations performed by each C-language instruction for the microcontroller. Interpret and design C programs
  • Develop mixed C/assembly language software
  • Explain what occurs within the microcontroller on an interrupt and develop programs using interrupts
Course Content Introduction to microcontrollers, instruction set, serial port operation, interrupt operation, assembly language programming, program structure and design, tools and techniques for program development, design and interface examples in assembly, design and interface examples.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Microcontrollers Main text, Chapter 1
2 Assembly Language Programming Chapter 2
3 Jump, Loop, and Call Instructions Chapter 3
4 I/O Ports Programming Chapter 4
5 Addressing Modes Chapter 5
6 Arithmetic Instructions and Programs Chapter 6
7 Logic Instructions and Programs Chapter 7
8 Single-Bit Instructions and Programming Chapter 8
9 Timer/Counter Programming in the microcontroller Chapter 9
10 Serial Communication Chapter 10
11 Interrupts Programming Chapter 11
12 Real World Interfacing I: LCD, ADC and Sensors Chapter 12
13 Real World Interfacing II: Stepper Motor, Keyboard, DAC Chapter 13
14 Interfacing to External Memory Chapter 14
15 Review
16 Review

Sources

Course Book 1. 8051 Microcontroller and Embedded Systems Using Assembly and C, Mazidi, Muhammad Ali, Prentice-Hall, 2nd edition, 2005
Other Sources 2. The 8051 Microcontroller, I.Scott MacKenzie and Raphael C.-W. Phan, Prentice Hall, 2006
3. Microcontroller Technology: The 68HC11 (4th Edition) by Peter Spasov , Prentice Hall; 4th edition, 2001
4. 68HC11 Manual by Motorola (available on the Internet)
5. http://comp.uark.edu/~wuj/teaching/eleg3923/
6. http://embedded-system.net/picdem-lab-development-kit-for-pic-microcontrollers-microchip.html

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 25
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 4 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems. X
2 To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose.
4 To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively.
5 Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering.
6 Can work effectively in disciplinary and multidisciplinary teams; can work individually.
7 a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language.
8 To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously.
9 a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications.
10 a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development.
11 a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 5 80
Laboratory 1 15 15
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 194