Bioinorganic Chemistry (CEAC412) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Bioinorganic Chemistry CEAC412 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Şeniz Özalp Yaman
Course Assistants
Course Objectives A major goal is to provide students an introduction of bioinorganic chemistry and to enable them to understand the roles of metals in living systems.
Course Learning Outcomes The students who succeeded in this course;
  • Understand the role of metals in living systems.
  • Discuss the chemistry of metals in distorting/distorted living systems.
  • Understand the role of metals in monitoring living systems.
  • Explain the role of metals in natural systems.
  • Apply knowledge of metals in living systems.
Course Content Toxic, essential amd key metals in the living systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Some General Principles Related chapter of the course book
2 Cobalt in biological systems Related chapter of the course book
3 The dioxygen molecule Related chapter of the course book
4 Magnesium in biological systems Related chapter of the course book
5 Iron in biological systems Related chapter of the course book
6 MIDTERM EXAMINATION I
7 Copper in biological systems Related chapter of the course book
8 Zinc in biological systems Related chapter of the course book
9 Nickel in biological systems Related chapter of the course book
10 Non metallic inorganic elements Related chapter of the course book
11 MIDTERM EXAMINATION II
12 Toxic metals Related chapter of the course book
13 Metal Deficiency and Disease Related chapter of the course book
14 Metal Deficiency and Disease Related chapter of the course book
15 Metal Nucleic Acid interaction Related chapter of the course book
16 Final Exam

Sources

Course Book 1. J.M Berg, S.J Lippard, Principles of Bioinorganic Chemistry, University science book, 1994.
2. W. Kaim, B.Schewederski,Bioinorganic Chemistry: Inorganic elements in the chemistry of life, John Wiley and Sons, 2005..

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering to solve chemical engineering and applied chemistry problems. X
2 An ability to analyze and model a domain specific problem, identify and define the appropriate requirements for its solution. X
3 An ability to design, implement and evaluate a chemical engineering system or a system component to meet specified requirements. X
4 An ability to use the modern techniques and engineering tools necessary for chemical engineering practices. X
5 An ability to acquire, analyze and interpret data to understand chemical engineering and applied chemistry requirements. X
6 The ability to demonstrate the necessary organizational and business skills to work effectively in inter/inner disciplinary teams or individually. X
7 An ability to communicate effectively in Turkish and English. X
8 Recognition of the need for, and the ability to access information, to follow recent developments in science and technology and to engage in life-long learning. X
9 An understanding of professional, legal, ethical and social issues and responsibilities in chemical engineering and applied chemistry. X
10 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards and methodologies. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 18 36
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125