General Physics I (PHYS101) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
General Physics I PHYS101 1. Semester 3 2 0 4 6
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The goal of this course is, by providing the calculus-based concepts of mechanics, to establish the relationships between mathematics, physics and engineering and apply the physical science to define and solve engineering problems.
Course Learning Outcomes The students who succeeded in this course;
  • To understand and apply solving problems of mechanics that lead to the understanding the fundamentals of related fields in engineering sciences.
  • To understand the conceptual topics of mechanics and apply to engineering problems.
  • To apply and integrate the basic science and the principles of engineering science.
  • To enhance students` ability and motivation to solve unsolved problems in various fields
  • To provide a useful introduction to the subject for engineering students to give them the opportunity to establish conceptual relations between mechanics and a wide range of topics of engineering science
Course Content Measurement, motion along a straight line, vectors, motion in two and three dimensions, force and motion I, force and motion II, kinetic energy and work, potential energy and conservation of energy, center of mass and linear momentum, rotation, rolling, torque, and angular momentum, equilibrium and elasticity.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Measurement, Estimating Physics for Scientists & Engineers with Modern Physics, Douglas C. Giancoli, Chapter 1 and Phys101 Laboratory Manual Introduction
2 Kinematics in One Dimension Douglas C. Giancoli, S. 27-38
3 Kinematics in One Dimension Douglas C. Giancoli, S.39-49
4 Kinematics in Two and Three Dimensions; Vectors Douglas C. Giancoli, S. 65-76
5 Kinematics in Two and Three Dimensions; Vectors Douglas C. Giancoli, S. 76-85
6 Newton’s Laws of Motion Douglas C. Giancoli, S.101-119
7 Using Newton’s Laws: Friction, Circular Motion Douglas C. Giancoli, S.134-151
8 Using Newton’s Laws: Friction, Circular Motion Douglas C. Giancoli, S.141-153
9 Work and Energy Douglas C. Giancoli, S.193-206
10 Conservation of Energy Douglas C. Giancoli, S.217-239
11 Linear Momentum Douglas C. Giancoli, S.252-273
12 Rotational Motion Douglas C. Giancoli, S.290-305
13 Rotational Motion Douglas C. Giancoli, S.305-317
14 Angular Momentum; General Rotation Douglas C. Giancoli, S.332-350
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Physics for Scientists & Engineers with Modern Physics, Douglas C. Giancoli (4th edition), Pearson (2014)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes. X
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. X
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline. X
6 Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. X
7 Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions. X
8 Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves. X
9 Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices. X
10 Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development. X
11 Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 14 2 28
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 153