ECTS - Calculus II
Calculus II (MATH152) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Calculus II | MATH152 | 2. Semester | 4 | 2 | 0 | 5 | 7 |
Pre-requisite Course(s) |
---|
MATH151 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The course is designed as a continuation of MATH151 Calculus I and aims to give the students the computational skills in series, analytic geometry and multi-variable differential and integral calculus to handle engineering problems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Infinite series, vectors in the plane and polar coordinates, vectors and motions in space, multivariable functions and their derivatives, multiple integrals: double integrals, areas, double integrals in polar coordinates, triple integrals in rectangular, cylindrical and spherical coordinates, line integrals, Independence of path,Green's theorem. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 9.1. Sequences and Convergence, 9.2. Infinite Series, | pp:495-409 |
2 | 9.3. Convergence Tests for Positive Series (The Integral Test, Comparison Tests, The Ratio and Root Tests), 9.4. Absolute and Conditional Convergence, | pp:510-526 |
3 | 9.5. Power Series, 9.6. Taylor and Maclaurin Series (Convergence of Taylor Series; Error Estimates), | pp:526-545 |
4 | 9.7. Applications of Taylor and Maclaurin Series, 10.1. Analytic Geometry in Three Dimensions, | pp:546-549 pp:562-568 |
5 | 10.2. Vectors, 10.3. The Cross Product in 3-Space, | pp:568-585 |
6 | 10.4. Planes and Lines, 10.5. Quadric Surfaces, | pp:585-596 |
7 | Midterm, | |
8 | 12.1. Functions of Several Variables, 12.2. Limits and Continuity, | pp:669-681 |
9 | 12.3. Partial Derivatives, 12.4. Higher Order Derivatives, 12.5. The Chain Rule, | pp:681-703 |
10 | 12.6. Linear Approximations, Differentiability, and Differentials, 12.7. Gradient and Directional Derivatives, 12.8. Implicit Functions, | pp:703-705 pp:706-707 pp:714-726 |
11 | 13.1. Extreme Values, 13.2. Extreme Values of Functions Defined on Restricted Domains, | pp:743-754 |
12 | 13.3. Lagrange Multipliers, 14.1. Double Integrals, | pp:756-760 pp:790-796 |
13 | 14.2. Iteration of Double Integrals in Cartesian Coordinates, 14.4. Double Integrals in Polar Coordinates, | pp:796-802 pp:808-812 |
14 | 14.5. Triple Integrals, 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), | pp:818-830 |
15 | 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), | pp:824-830 |
16 | Final Exam |
Sources
Course Book | 1. Calculus: A complete Course, R. A. Adams, C. Essex, 7th Edition; Pearson Addison Wesley |
---|---|
Other Sources | 2. Thomas’ Calculus Early Transcendentals, 11th Edition.( Revised by M. D. Weir, J.Hass and F. R. Giardano; Pearson , Addison Wesley) |
3. Calculus: A new horizon, Anton Howard, 6th Edition; John Wiley & Sons | |
4. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall | |
5. Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems. | X | ||||
2 | Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes. | |||||
3 | Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. | |||||
4 | Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively. | |||||
5 | Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline. | |||||
6 | Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions. | |||||
8 | Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves. | |||||
9 | Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices. | |||||
10 | Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development. | |||||
11 | Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | 16 | 2 | 32 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 18 | 18 |
Total Workload | 176 |