ECTS - Production Design and Prototyping

Production Design and Prototyping (ME488) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Production Design and Prototyping ME488 Area Elective 1 4 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Observation Case Study.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of this course is to introduce students basic mechanical subjects, material science, basic manufacturing methods and design principles of engineering and in addition basic design factors (line, figure, color, material, texture, design field, form, value in lighting), ergonomics / anthropometry and meaning in design and by having an interdisciplinary project, to combine the knowledge and practice.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have the ability to understand and explain the basic mechanical design problems through applications with the knowledge about basic materials science and production methods. Students will be able to identify basic product design factors with respect to producibility and interpret the final product in the manner of meaning considering ergonomics and anthropometry. Students will be able to propose solutions to a design problem with the information gained from research; improve and present them by sketch drawings and prototyping. Students will be able to work in an interdisciplinary team.
Course Content Introduction to basic mechanical concepts,mechanical behavior of basic structural elements;introduction to basic materials science and basic manufacturing methods,introduction to mechanical and physical properties of materials;introduction to basic manufacturing processes and casting and material forming; basic design factors(line,figure,color,material,texture,design field,form,value in lighting), ergonomics/anthropometry;meaning in design;design project development by drawing and prototyping.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Force: Tensile, Compression and Shear forces. Moment. Weight. Equilibrium system in the plane., Mechanical behavior of basic structural elements Mechanical and physical properties of materials. Material Characterization Basic manufacturing methods. Casting and Material Forming Basic design factors in product design: Line, figure, color, material, texture, design field, form, value in lighting. Ergonomics and anthropometry Meaning in design. Representation of project topics and determination of project groups. Initial ideas of the project presentation: Preliminary research file (problem description, solution proposals, sketch drawings). Improvement of preliminary research file; solution proposals, sketch drawings. Improvement of proposed solutions to the design problem and sketch drawings. Representation of the requirement list for the pre-jury evaluation. Pre-jury evaluation. Improvement of the project. Information about the mood board design. Transition to prototyping process and presentations of mood boards. Prototyping. Prototyping. Prototyping. Prototyping.

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation 8 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 26 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose.
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively.
5 Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline.
6 Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions.
8 Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves.
9 Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices.
10 Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development.
11 Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration 8 2 16
Project
Report
Homework Assignments 1 4 4
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125