ECTS - Advanced Analytical Chemistry

Advanced Analytical Chemistry (CEAC504) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Analytical Chemistry CEAC504 3 0 0 3 5
Pre-requisite Course(s)
CEAC 201
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Murat Kaya
Course Assistants
Course Objectives • Learn the basic principles of Analytical Chemistry with a theoretical background in chemical principles that are especially pertinent to the quantitative chemical analysis • Develop an understanding of the range and uses of analytical methods in chemical analysis. • Appreciate the statistical significance of sampling and analysis • Get introduction in modern analytical instrumentation. • Survey a variety of analytical techniques and methods important for all areas of chemistry, medicine, and life science. • Develop skills in the scientific method of planning, developing, conducting, reviewing and reporting experiments. • Develop some understanding of the professional and safety responsibilities residing in working on the chemical analysis.
Course Learning Outcomes The students who succeeded in this course;
  • Describe the theory of sampling, sample preparation and sample preparation techniques
  • Refer to the chemical theory behind the use of modern instrumental techniques for quantitative chemical analysis.
  • Apply solid data processing and evaluation of analytical data (statistical treatment of analytical data).
  • Develop and apply analytical methods in different field of research.
  • Evaluate and discuss analytical chemical data from the literature.
Course Content The analytical process and measurements, statistical treatment of analytical data, acid base equilibria, the solubility of precipitates, gravimetric analysis, volumetric analysis, precipitation titration, compleximetric titration, principles of oxidation reduction reactions, oxidation reduction titration, spectroscopic method of analysis.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The Nature of Analytical Chemistry Chapter 1
2 Calculations Used in Analytical Chemistry Chapter 4
3 Calculations Used in Analytical Chemistry Chapter 4
4 Errors in Chemical Analyses Chapter 5,6
5 Statistical Data Treatment and Evaluation Chapter 7
6 Aqueous Solutions and Chemical Equilibria Chapter 9
8 Effect of Electrolytes on Chemical Equilibria Chapter 10
9 Solving Equilibrium Problems for Complex System Chapter 11
10 Titrations in Analytical Chemistry Chapter 13
11 Principles of Neutralization Titrations and Applications Chapter 14,16
13 Complex Acid/Base Systems and Titration Curves Chapter 15
14 Complexation Reactions Titrations Chapter 17
15 Introduction to Spectrochemical Methods Chapter 24


Course Book 1. D. A. Skoog, D.M. West, Fundamentals of Analytical Chemistry, 2010
2. D. A. Skoog, Principles of Instrumental Analysis, 1984
Other Sources 3. A.Usanmaz, Qualitative Analytical Chemistry, 1991, METU Press
4. R. S. Drago, Physical Methods for Chemists, 1997
5. Silverstein, Bassler, Morrill, Spectrometric Identification of Organic Compounds,1991

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 16 32
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 126