ECTS - Advanced Analytical Chemistry
Advanced Analytical Chemistry (CEAC504) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Advanced Analytical Chemistry | CEAC504 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | • Learn the basic principles of Analytical Chemistry with a theoretical background in chemical principles that are especially pertinent to the quantitative chemical analysis • Develop an understanding of the range and uses of analytical methods in chemical analysis. • Appreciate the statistical significance of sampling and analysis • Get introduction in modern analytical instrumentation. • Survey a variety of analytical techniques and methods important for all areas of chemistry, medicine, and life science. • Develop skills in the scientific method of planning, developing, conducting, reviewing and reporting experiments. • Develop some understanding of the professional and safety responsibilities residing in working on the chemical analysis. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | The analytical process and measurements, statistical treatment of analytical data, acid base equilibria, the solubility of precipitates, gravimetric analysis, volumetric analysis, precipitation titration, compleximetric titration, principles of oxidation reduction reactions, oxidation reduction titration, spectroscopic method of analysis. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | The Nature of Analytical Chemistry | Chapter 1 |
2 | Calculations Used in Analytical Chemistry | Chapter 4 |
3 | Calculations Used in Analytical Chemistry | Chapter 4 |
4 | Errors in Chemical Analyses | Chapter 5,6 |
5 | Statistical Data Treatment and Evaluation | Chapter 7 |
6 | Aqueous Solutions and Chemical Equilibria | Chapter 9 |
7 | MIDTERM I | |
8 | Effect of Electrolytes on Chemical Equilibria | Chapter 10 |
9 | Solving Equilibrium Problems for Complex System | Chapter 11 |
10 | Titrations in Analytical Chemistry | Chapter 13 |
11 | Principles of Neutralization Titrations and Applications | Chapter 14,16 |
12 | MIDTERM II | |
13 | Complex Acid/Base Systems and Titration Curves | Chapter 15 |
14 | Complexation Reactions Titrations | Chapter 17 |
15 | Introduction to Spectrochemical Methods | Chapter 24 |
16 | FINAL |
Sources
Course Book | 1. D. A. Skoog, D.M. West, Fundamentals of Analytical Chemistry, 2010 |
---|---|
2. D. A. Skoog, Principles of Instrumental Analysis, 1984 | |
Other Sources | 3. A.Usanmaz, Qualitative Analytical Chemistry, 1991, METU Press |
4. R. S. Drago, Physical Methods for Chemists, 1997 | |
5. Silverstein, Bassler, Morrill, Spectrometric Identification of Organic Compounds,1991 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems. | |||||
2 | Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes. | |||||
3 | Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. | |||||
4 | Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively. | |||||
5 | Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline. | |||||
6 | Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually. | |||||
7 | Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions. | |||||
8 | Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves. | |||||
9 | Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices. | |||||
10 | Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development. | |||||
11 | Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 16 | 32 |
Prepration of Final Exams/Final Jury | 1 | 30 | 30 |
Total Workload | 126 |