Conductive Polymers (CEAC557) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Conductive Polymers CEAC557 3 0 0 3 5
Pre-requisite Course(s)
CEAC103 AND CEAC104 OR CEAC105
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Atilla Cihaner
Course Assistants
Course Objectives The aim of the course focuses on the theories, synthetic methods, and basic physical aspects needed to understand the behavior and performance of conducting polymers. The course initially examines the theories behind conjugated materials and electron-lattice dynamics in organic systems. It also describes detail synthesis methods and electrical and physical properties of the full family of conducting polymers, including polyacetylenes, polyanilines, poly(arylene vinylenes), poly(arylene ethynylenes), and polyheterocycles. Finally, it concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications.
Course Learning Outcomes The students who succeeded in this course;
  • Understand principles of conducting polymers and the reasons behind their conductivity
  • Describe experimental methods for the synthesis of conducting polymers.
  • Propose synthesis of various conducting polymer architectures.
  • Explain the structure-property relationships.
  • Explain the structure-property relationships. • Explain how the electroanalytical and spectroscopic techniques can be used for characterization.
  • Learn proceesing methods for conducting polymers and their applications
Course Content Discovery and development of conductive polymers, polymerization techniques, chemical polymerization, electropolymerization, classes of conducting polymers, polyacetylenes, polyanilines, polypyrroles, polythiophenes, polycarbazoles, polyfluorenes, etc. and their derivatives, structure?property relationships, insulator?metal transition, metallic sta

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The Discovery and Development of Conducting Polymers 1-20
2 Conductive Polymers versus Metals and Insulators 21-30
3 Synthesis and Classes of Conducting Polymers From Part 3 to Part 14
4 Synthesis and Classes of Conducting Polymers From Part 3 to Part 14
5 Synthesis and Classes of Conducting Polymers From Part 3 to Part 14
6 Synthesis and Classes of Conducting Polymers From Part 3 to Part 14
7 Synthesis and Classes of Conducting Polymers From Part 3 to Part 14
8 MIDTERM I
9 Properties and Characterization of Conducting Polymers From Part 15 to Part 22
10 Properties and Characterization of Conducting Polymers From Part 15 to Part 22
11 Properties and Characterization of Conducting Polymers From Part 15 to Part 22
12 Properties and Characterization of Conducting Polymers From Part 15 to Part 22
13 PRESENTATION
14 Applications and Devices Based on Conducting Polymers From Part 5 to Part 16
15 Applications and Devices Based on Conducting Polymers From Part 5 to Part 16
16 FINAL EXAMINATION

Sources

Course Book 1. Terje A. Skotheim and John R. Reynolds (Editors), Handbook of Conducting Polymers, Conjugated Polymers-Theory, Synthesis, Properties, and Characterization, 3rd Edition, CRC Press, Taylor & Francis Group, 2007.
2. Terje A. Skotheim and John R. Reynolds (Editors), Handbook of Conducting Polymers, Conjugated Polymers-Processing and Applications, 3rd Edition, CRC Press, Taylor & Francis Group, 2007.
3. Andreas Elschner, Stephan Kirchmeyer, Wilfried Lövenich, Udo Merker and Knud Reuter, PEDOT-Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, Taylor & Francis Group,2011.
Other Sources 4. Serge Cosnier and Arkady Karyakin (Editors), Electropolymerization, Concepts, Materials and Applications, 1st Edition, Wiley-VCH, 2010.
5. Mario Leclerc and Jean-Francois Morin (Editors), Design and Synthesis of Conjugated Polymers, 1st Edition, Wiley-VCH, 2010.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 30
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to chemical engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in chemical engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Ability to communicate effectively in Turkish, both in writing and in writing; at least one foreign language knowledge; ability to write reports and understand written reports, to prepare design and production reports, to make presentations, to give clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in chemical engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of chemical engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration 1 15 15
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 18 18
Prepration of Final Exams/Final Jury 1 28 28
Total Workload 125