ECTS - Advanced Heat and Mass Transfer

Advanced Heat and Mass Transfer (CEAC509) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Heat and Mass Transfer CEAC509 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Bölüm öğretim üyeleri
Course Assistants
Course Objectives The course aims to cover the concept of energy balances and the three modes of heat transfer - conduction, convection, and radiation in advanced level.
Course Learning Outcomes The students who succeeded in this course;
  • Explain the concept of energy balances and the three modes of heat transfer - conduction, convection, and radiation.
  • Determine steady state and transient temperature distribution in various solid geometries of practical importance.
  • Select and apply the appropriate correlation for different heat and mass convection processes.
  • Analyze mass diffusion in a stationary medium and low rate mass convection based on the analogy between heat and mass transfer.
  • Determine appropriate transport phenomena for any process or system involving mass transfer.
Course Content Principles and analogies of molecular heat and mass transport, convective heat and mass transport, interfacial heat and mass transfer,basic vectorial equation for mass transfer with chemical reaction, analytical and numerical solution of one dimensional transient transport equations, gas absorption with chemical reaction.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Principles of molecular heat and mass transfer
2 Analogy of heat and mass tranfer
3 Convective heat and mass transfer
4 Convective heat and mass transfer
5 Interfacial mass transfer
6 Midterm I
7 Interfacial mass transfer
8 Mass transfer with chemical reaction
9 Mass transfer with chemical reaction
10 One dimensional unsteady state transport equations
11 One dimensional unsteady state transport equation
12 Gas absorption with chemical reaction
13 Gas absorption with chemical reaction
14 Review
15 Review
16 Final exam

Sources

Course Book 1. C.J.Geankoplis, Transport Processes & Separation Processes Principles, Int. Ed., Pearson, 2014
2. F.P. Incorpera, D.P. Dewitt, T.L.Bergman,A.S.Levine, Principles of Heat and Mass Transfer, 7th Ed., Wiley, 2013

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose.
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively.
5 Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline.
6 Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions.
8 Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves.
9 Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices.
10 Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development.
11 Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 20 40
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 124